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The aim of this deliverable (D4.1 RISC-V Compiler Backends) is to supplement the software
releases of the two compiler toolchains involved in SYCLOPS, namely, DPC++ (formerly
ACORAN) and AdaptiveCpp (formerly hipSYCL), and to provide a high-level overview of work
done with respect to (i) support for RISC-V (as host CPU and as accelerator), and (ii) support
for advanced functionalities and optimizations in SYCL.

Executive Summary

In a nutshell, the work done in SYCLOPS has demonstrated that (i) We are able to compile
and execute SYCL applications using both DPC++ and AdaptiveCpp on real RISC-V host
CPUs (the 64-core SOPHON SG2042 RISC-V CPU deployed in the SYCLOPS platform), (ii)
We are able to offload SYCL kernels to RISC-V accelerators (FPGA-based RISC-V platform
containing A730 CSIP core available in the SYCLOPS platform) using the oneAPI construction
kit, and (iii) using new functionalities like kernel fusion in DPC++, dynamic functions in
AdaptiveCpp, and others, we are able to substantially improve SYCL application performance
on GPUs from several vendors. Both our compilers are publicly available, and we have also
disseminated our work via technical blogs on the SYCLOPS website, and technical talks on
the SYCLOPS Youtube channel.
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1 Introduction
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Figure 1. SYCLOPS architecture

Figure 1 shows the SYCLOPS hardware—software stack consists of three layers: (i)
infrastructure layer, (ii) platform layer, and (iii) application libraries and tools layer.

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack
and provides heterogeneous hardware with a wide range of accelerators from several vendors.
Deliverable “D3.17 SYCLOPS Reference Platform v1.0” describes various accelerators
available in the current SYCLOPS platform at M18.

Platform layer: The second layer from the bottom, the platform layer, provides the software
required to compile, execute, and interpret SYCL applications over processors in the
infrastructure layer. SYCLOPS will contain oneAPI DPC++ compiler from CPLAY, and
AdaptiveCpp, formerly known as hipSYCL, an open-source SYCL compiler toolchain from
UHEIL In terms of SYCL interpreters, SYCLOPS will contain Cling from CERN. Cling is a state-
of-the-art C++ interpreter that is being used as an interactive code development environment
for exploratory analysis.

Application libraries and tools layer: While the platform layer described above enables
direct programming in SYCL, the libraries layer enables API-based programming by providing
pre-designed, tuned libraries for various deep learning methods for the PointNet autonomous
systems use case (SYCL-DNN), mathematical operators for scalable HEP analysis (SYCL-
ROOT), and data parallel algorithms for scalable genomic analysis (SYCL-GAL).

This deliverable covers the SYCL compilers part of the stack as highlighted in Figure 1. In the
M1-M18 period of SYCLOPS, several new functionalities have been added to both DPC++ and
AdaptiveCpp in the context of “Task 4.1: Compiler support for RISC-V” in WP4 (M3-M33).
These functionalities have already been merged and integrated in several public releases of
DPC++ and AdaptiveCpp that have been made during the project, or is being staged for
integration and release in the upcoming months. This deliverable is a summary of this work
with a special focus on (i) support for RISC-V hardware available in the SYCLOPS platform at
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M18, and (ii) support for advanced SYCL functionalities that will be used to improve the
performance of application libraries later in the project.

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level
overview of the overall SYCLOPS architecture and positions this deliverable with respect to
both components in the SYCLOPS stack and WP/tasks in the work plan. Section 2 describes
updates to DPC++ and oneAPI. Section 3 describes updates to AdaptiveCpp.
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After the official start of project SYCLOPS, Intel acquired our partner CPLAY. Hence, CPLAY’s
proprietary ACORAN ComputeCPP compiler described in the SYCLOPS proposal has been
discontinued. This has replaced by open-source DPC++ as one of the SYCL implementation
used in SYCLOPS. DPC++ is an open-source, state-of-the-art SYCL compiler and runtime
with a much larger developer and user community than ComputeCPP. DPC++ and SYCL form
the core of oneAPI!-- an open, cross-architecture programming model allowing developers to
use a single codebase across multiple accelerator architectures such as GPUs and FPGAs.

2 DPC++ & oneAPI

With Al adoption increasing rapidly, it has become increasingly common for hardware vendors
to create specialist Al processors that run inference and/or training more efficiently than would
be possible with commercial-off-the-shelf hardware. While these custom processors can offer
the advantage of performance, they come with challenges for developers as it often involves
porting software to proprietary and non-standard programming models. oneAP| Construction
Kit (OCK) has been created by CPLAY to solve this problem by bringing all the benefits of
oneAPI and SYCL to new and custom hardware. OCK was developed out of ComputeAorta--
a part of the ACORAN toolchain developed by CPLAY, and its goal is to expose the full
performance potential of heterogenous hardware and to provide standards compliant
interfaces for developers.

The following diagram shows how OCK currently makes it possible to add new devices so that
they can make use of the DPC++ SYCL compiler.

DPC#++ Runtime
Library

OpenCL Plugin

oneAPI Construction Kit

Customer Customer
ComputeMux Runtime ComputeMux Compiler

Customer HAL Customer LLVM
Install

Figure 2: Components of the oneAPI construction kit

1 https://uxlfoundation.org/
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The DPC++ runtime allows OpenCL to be used as a plugin. OCK supports this interface and
provides runtime and compiler modules. Support for new accelerators is done by developing
a new custom target. A custom target is made up of three key parts:

e Runtime code (ComputeMux Runtime)
e Compiler code ComputeMux Compiler)
e A HAL (Hardware Abstraction Layer)

The runtime code will run on the host device and will interface with the target device. It will
handle aspects such as allocation of and reading/writing memory, queuing of commands and
executing kernels on the device. The compiler code is typically based on a number of LLVM
passes that will turn the original kernels into something matching the interfaces required to run
a kernel on the device. The optional HAL gives static information and simplified runtime
interfaces to a device to make getting started easier.

During this first half of the SYCLOPS project, we have worked on completely open sourcing
OCK (https://github.com/codeplaysoftware/oneapi-construction-kit). Detailed information
about OCK is available on the developer documentation website
(https://developer.codeplay.com/products/oneapi/construction-kitthome/).  Further, in the
context of SYCLOPS, we have extended DPC++ and OCK to support the two RISC-V targets
that have been deployed in the SYCLOPS hardware platform, namely, the FPGA board with
CSIP A730 RISV-V soft core processor, and the MilkV Pioneer with SOPHON SG2042 64-
core RISC-V CPU. A detailed description of this hardware is available in deliverable D3.1.

2.1 OCK & CSIP RISC-V FPGA Board

To support the FPGA, we developed a remote HAL, which is essentially a shim layer to enable
offloading kernel code to a device that may be located remotely (Relevant PRs:
https://github.com/codeplaysoftware/oneapi-construction-kit/pull/437,
https://github.com/codeplaysoftware/oneapi-construction-kit/pull/434). The remote HAL server
uses a socket connection to communicate with a remote client. This can be cross-compiled as
needed. It is a small program which can be modified to use different ways of transmission or
different underlying HAL interfaces. The server will be paired with a built oneapi-construction-
kit OpenCL interface using the HAL socket client.

When run, the HAL server requires a port which will be listened on. This can be any free user
port. It also will only accept connections from specified nodes. This can be an IP address or
host name e.g. "127.0.0.1" or "localhost". This defaults to "127.0.0.1", assuming that ports will
be forwarded if the client is not run on the same machine. The server will accept one
connection, which when completed will end the program. This is to avoid programs putting the
cpu into a bad state. The HAL client by default supports a socket connection only to the current
node and it expects the server to be running on the same machine. To be able to run the server
on a different machine (for example where we have a RISC-V device running Ubuntu), one
can use ssh port forwarding. Running the client is done similar to any normal OCK OpenCL
target (or via SYCL OpenCL plugin).

We worked together with EUR and CSIP in getting the remote HAL server executed on the
CSIP FPGA board. With this, we could treat the RISC-V soft core on the FPGA board as an
accelerator and use OCK to offload kernels to it. For each kernel launch OCK runs under the
hood a tool called vecz which is a whole function vectorizer to combine a number (typically the

Copyright © 2023 SYCLOPS | DELIVERABLE 4.1 — RISC-V Compiler Backends Page 10 of 22


https://github.com/codeplaysoftware/oneapi-construction-kit
https://developer.codeplay.com/products/oneapi/construction-kit/home/
https://github.com/codeplaysoftware/oneapi-construction-kit/pull/437
https://github.com/codeplaysoftware/oneapi-construction-kit/pull/434

%) SYCLOPS

vector width supported by the hardware) of work items into a vectorized kernel. If that
vectorization succeeded the original kernel launch over a range/ND range in SYCL is then
adapted by OCK LLVM passes to launch the vectorized kernel instead over the range divided
by the vector width. One the device side OCK has a math library called Abacus to provide
builtins with the precision required by OpenCL. Details about end-to-end experiments
performed to validate this setup are described in deliverable D3.1.

2.2 OCK, DPC++, & MilkV Board

On the MilkV board, we have two different compilation and execution paths for a SYCL
program. The first path is to natively compile a program to run on the RISC-V CPU. To enable
this, we have built the latest version of DPC++ on MilkV targeting the SOPHON SG2024 64-
core RISC-V CPU, and were able to demonstrate building SYCL applications with kernels
running on OpenCL CPU target, and even on the new still experimental DPC++ NativeCPU
target which uses the OCK vectorizer and LLVM passes to adapt the work item loops. The
second path is to use OCK as the target. To enable this, we have successfully configured and
built OCK on the MilkV board. This build provides the OpenCL driver for RISC-V that enables
running OpenCL and SYCL kernels on the CPU. Experimental results evaluating DPC++ on
MilkV are described in deliverable D3.1.

All work on OCK to enable RISC-V support has been made available on the OCK Github

( ). Fixes related to RISC-V
code generation were submitted as pull requests for the main Illvm repository
( ) from where they will flow into the OCK and DPC++

repositories. We have created internal Gitlab CI jobs to run the SYCL and OpenCL CTS on
RISC-V (CPU), with the view to make the results publicly available. Internally, we had to update
our CI to use the latest Ubuntu images to be able to support RISC fp16 in Gitlab CI (Note that
we aim to target Github ClI later in the project to be able to open the Cl up to the community).
In the second half of the project we will focus on performance optimisations for RISC-V,
targeting RVV, improve threading, integrating JIT compilation, finalising cross-compilation.

2.3 DPC++ & Kernel Fusion

Today, many computational tasks require heterogeneous computing for their efficient solution.
However, every kernel launch on an accelerator carries some runtime overhead for tasks such
as synchronization. This effect is particularly pronounced for a sequence of very short-running
device kernels. One solution to help achieve the benefit of accelerators is to fuse multiple
smaller kernels into a single, larger kernel. The fused kernel is better able to amortize the
overhead for device kernel launch, due to the better compute/overhead ratio.

We have developed an extension for the SYCL standard which lets the user decide when and
which kernels to fuse, and then completely automates the creation of the fused kernel
implementation in the SYCL runtime. This relieves the user of the burden to manually
implement a fused kernel, and allows for fast performance exploration. Current DPC++
development builds and daily releases already by default include support for kernel fusion on
Intel CPUs and GPUs, Nvidia GPUs and AMD GPUs.

Figure 3 shows the fused and unfused times when running benchmarks from SYCL-BENCH
on an Intel CPU and an Intel iGPU. SYCL-Bench is a benchmark suite specifically designed
for SYCL. In addition to allowing for a performance characterization of devices and different
SYCL implementations, the different SYCL-specific benchmarks also present optimization
opportunities for SYCL runtime implementations to exploit. When applying fusion optimizations
to the SYCL-Bench benchmark suite, we found that six out of nine benchmarks that launch
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more than one kernel were amendable to the kernel fusion. As it can be seen, speedups are
less notable on CPU in this case, getting little to no improvement in most cases, except for the
bicg benchmark, also presenting speedups in the range of up to 4.91x with a mean of 1.59x
on GPU. The correlation and covariance benchmarks both present speedups of around 1.30x
for small input sizes when run on GPU. Also, benchmark gramschmidt presents no
improvement on CPU, but an improvement of up to 3.48x on GPU. More information on how
to use kernel fusion together with a detailed characterization of performance is documented in

&) SYCLOPS

[4,5].
GPU CPU
Benchmark name Inputsize Unfused (ms) Fused (ms) Speedup Unfused (ms) Fused (ms) Speedup
4.0 % 10° 322.04 326.43 0.99 280.79 336.95 0.83
3mm 1.6 x 10’ 241947  2,276.86 1.06 3,089.72  3,139.02 0.98
3.6 x 107 9.341.02 9.343.94 1.00 10, 914.26 11,146.45 0.98
1.0 x 10° 8.87 1.81 491 5.57 1.70 3.28
4.0 x 10° 16.99 9.59 1.77 10.49 7.34 1.43
9.0 x 10° 27.55 20.49 1.34 2212 17.29 1.28
1.6 % 107 41.65 34.45 1.21 33.12 30.09 1.10
bi 2.5% 107 65.05 54.96 1.18 58.42 46.61 1.25
18 1.0 % 10° 222.23 210.10 1.06 198.82 200.61 0.99
4.0 x 10® 83831 823.96 1.02 824.03 817.90 1.01
9.0 x 10° 1,862.21 1,836.89 1.01 1,923.53 1,956.40 0.98
1.6 % 10° 2,896.05 2,408.19 1.20 3,725.31 3,743.00 1.00
2.5 x 107 4,509.51 3,698.19 1.22 6,091.05 6,071.58 1.00
1.0 x 10° 475.03 364.74 1.30 168.00 166.09 1.01
correlation 4.0 x 10° 3,014.59 2,682.79 1.12 1,443.61 1,451.46 0.99
9.0 x 10° 9.380.68 8,795.50 1.07 5.774.76 5,869.03 0.98
1.0 % 10 478.47 366.41 1.31 172.91 166.93 1.04
covariance 4.0 x 10° 3,042.90 2,685.36 1.13 1,432.00 1,420.00 1.01
9.0 x 10° 9.376.02 8,880.75 1.06 5,593.98 5,659.49 0.99
3.0 x 10° 2,095.92 1,780.02 1.18 1,347.24 1,499.20 0.90
fdtd2d 1.2 x 107 7.275.26 6,505.02 1.12 6,146.34 5,783.75 1.06
2.7 x 107 15,095.85 13,872.71 1.09 13,72411 12,818.70 1.07
3.0 x 10° 1,905.71 548.06 3.48 2,412.43 2,717.39 0.89
gramschmidt 1.2x 107 8,309.64 3,694.80 2.25 19,774.62 24,075.27 0.82
2.7 x 107 23,488.17 9,972.67 2.36 67,750.92 69,185.15 0.93

Figure 3: Results of kernel fusion under SYCL-BENCH benchmark suite.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.1 — RISC-V Compiler Backends

Page 12 of 22



%) SYCLOPS

During the project time frame, a number of important changes were introduced to facilitate
RISC-V support, and to improve the supporting compiler and runtime infrastructure in general.
Firstly, the hipSYCL project was renamed to AdaptiveCpp to better reflect the broadened
foocus of the project, since the old name was frequently misinterpreted as a focus on AMD
hardware. This renaming was positively received. For example, the rate in which the project
received stars on Github (this roughly corresponds to github users marking a project as
interesting to them) increased noticeably after the old name was abandoned in early 2023.
This is illustrated in the figure below.

3 AdaptiveCpp

1000

800

600

Github 10
stars

200

2019 2020 2021 2022 2023 2024

Time

Figure 4: Github stars for AdaptiveCpp

On the technical side, substantial changes were introduced. Because the strategy for targeting
RISC-V hardware relies on targeting CPLAY’s OCK, AdaptiveCpp needed to be able to target
OpenCL devices using SPIR-V, as this is how the OCK operates. AdaptiveCpp supports a
generic single-pass (SSCP) JIT compiler. This compiler embeds the device code at compile
time as generic intermediate representation (IR) of the LLVM compiler infrastructure. At
runtime, it can then generate amdgcn code for AMD GPUs, PTX code for NVIDIA GPUs, and
SPIR-V for OpenCL devices (e.g. Intel GPUs or RISC-V). Recently, an additional backend was
added to target the native host CPU. This design has the advantage that a single compilation
can generate a binary that can dispatch to all of the devices supported by AdaptiveCpp,
depending on what is found on the system. AdaptiveCpp is the only SYCL implementation that
can generate code for all these devices with a unified JIT compilation infrastructure.

Finally, we worked together with other partners in building and configuring AdaptiveCpp on the
SYCLOPS hardware platform, and demonstrating that SYCL kernels can be executed on GPU
and RISC-V accelerators. Experimental results validating AdaptiveCpp and benchmarking its
performance with respect to DPC++ are described in deliverable D3.1. In the rest of this
section, we explain technical changes introduced in AdaptiveCpp is more detail.

3.1 OpenCL runtime backend

While the generic JIT compiler was already available at the beginning of the project, it was still
experimental and did not yet support OpenCL. AdaptiveCpp has a modular C++ interface for
backends. Therefore, adding new runtime backends is fairly straight-forward as it mainly
requires implementing these interfaces. We have thus added a new OpenCL runtime backend,
which has since been shown to perform well (see e.g. for performance on Intel GPUs with
OpenCL [1]). Our publication on SYCL-Bench 2020 [2] contains microbenchmarks on some
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Figure 5: Kernel launch latency under various backends

aspects of the runtime. For example, Figure 5 (taken from [2]) shows the task scheduling
latency for 50000 kernel launches on various hardware — the data on the Intel Max 1100 GPU
was obtained using the new OpenCL backend. For the more modern USM memory
management APl in SYCL, AdaptiveCpp’s OpenCL backend even outperforms the Intel
oneAPI DPC++ compiler on the Intel GPU. Note that the data for the AMD MI100 GPU in the
DPC++ case is missing due to excessive runtime. Apart from the AMD case, AdaptiveCpp and
oneAP| DPC++ perform similarly for this workload.

3.2 Code generation
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SPIR-V generation through the generic JIT compiler is a complex process that was
substantially improved and optimized over the course of the project. The original design of our
compiler can be found in [3].

Firstly, SYCL features were implemented that at the start of the project were still missing in the
generic JIT compiler. This in particular affects atomics and the SYCL 2020 reduction.

B AdaptiveCpp-SMCP
[N AdaptiveCpp-SSCP
BN Intel DPC++

w
o

N
wn

[t N
w o

Execution time [ms]
[
(]

Tesla V100S Intel Max 1100 AMD MI100
Figure 6: Atomic test results from SYCL-Bench

Atomics in the generic JIT compiler are implemented using a builtin interface that is
implemented in backend-specific LLVM bitcode libraries. Compare-and-swap loops as
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emulations of atomics are only used in cases where there is no native backend functionality to
represent an atomic operation. Figure 6 (again taken from our paper [2]) shows
microbenchmark results using the atomic test from SYCL-Bench 2020. The SSCP results refer
to our new generic JIT compiler, and the SMCP results, where available, to our old compiler.
As can be seen, the atomic implementation in the generic JIT compiler behaves very similarly
compared to either DPC++ or our old (non-SPIR-V capable) compilers.

The SYCL 2020 reduction interface defines a flexible API that allows specifying reductions over
arbitrary types (including user-defined types) and arbitrary reduction operators, as long as they
are associative. This also include cases where no identity for the reduction is known. This
generality makes reductions challenging to implement, and to optimize. We have added an
implementation that supports arbitrary data types and arbitrary reduction operators.
Additionally, it employs an efficient caching scheme for scratch allocations that might be
needed. Additional optimizations include assigning multiple reduction elements to each SYCL
work item to better utilize memory bandwidth, as well backend-specific code paths. In
particular, when running on the CPU, a different memory access pattern is employed. With the
BabelStream benchmark, we find that our reduction implementation delivers performance in
line with other compilers and programming models for the same problem, and in line with the
hardware’s memory bandwidth.

In the original implementation of the generic JIT compiler, the -ffast-math optimization flag was
not yet correctly exploited. This flag is commonly used by applications which prefer speed over
accuracy. We have thus added proper fast-math handling, which includes a) relaxing numerical
requirements when compiling user code and b) linking against bitcode libraries providing e.g.
math builtins that employ similar optimizations. Furthermore, the default floating point model
of the compiler was aligned to the defaults of other heterogeneous compilers (e.g. AMD’s HIP
compiler or DPC++) and now uses the clang option -ffp-contract=fast by default. This can result
in a noticeable performance increase for applications not requesting a specific floating-point
model at compile time.

With the release of AdaptiveCpp 24.02, the generic JIT compiler was elevated to be the default
compiler of AdaptiveCpp. This means that a simple compiler invocation (e.g. acpp -o test
test.cpp) will by default generate a binary that can dispatch kernels to the host CPU, NVIDIA
GPUs, AMD GPUs, Intel GPUs, as well as the oneAPI construction kit, and thus RISC-V
hardware.

3.3 JIT Time Optimizations

The AdaptiveCpp generic JIT compiler lowers and optimizes LLVM IR at runtime for the target
backends. This opens the door for a wide array of runtime optimizations, but can cause
additional overheads compared to directly generating SPIR-V at compile time. To mitigate this,
AdaptiveCpp 24.02 has introduced a unified kernel cache across backends, with a persistent
second-level cache on disk. To enable this two-level cache system, a new mechanism of
uniquely identifying kernels was introduced: A 128-bit hash generated from all of configuration
parameters specifying the current JIT compilation, such as target backend, device and target
architecture, the translation unit that the kernel originates from, the kernel name, and others.
Especially for future application runs, the persistent cache mitigates the impact of the additional
step of processing the LLVM IR, which other compilers do not have to do.

With a JIT compiler, it is in principle possible to perform optimizations that are impossible in a
static compilation model, since a JIT compiler can consider information only known at runtime.
A downside of performing such JIT-time optimizations is however that it might lead to additional
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JIT compilations. With JIT overheads having been mitigated as a concern with the persistent
cache, we have decided to implement additional JIT-time optimizations that are not commonly
done by default in other production compilers. To this end, we have introduced the
ACPP_ADAPTIVITY_LEVEL environment variable, which can be interpreted as a runtime
optimization level. If the adaptivity level is 0, it will not perform any additional optimizations,
trying to avoid additional JIT compilation steps. If the adaptivity level is 1, a set of optimizations
is enabled that typically do not require many additional kernels to be generated and are thus
relatively risk-free. This includes hardwiring the kernel work group size as a constant in the
code, and also informing the backend optimizer about the kernel work group size, which can
help register scheduling. Other optimizations include the detection of whether the problem size
fits in 32-bit integers, and if so, not carrying out calculations e.g. to determine the global id of
a work item in 64-bit.

The performance results below show the performance improvements on NVIDIA, AMD and
Intel that were achieved from the combined effect of the previously mentioned improvements
at the time of the AdaptiveCpp 24.02 release, compared to the previous version 23.10.
DPC++ results are provided as reference as well. As can be seen from these results, the
performance increase from AdaptiveCpp 23.10 to 24.02 is noticeable on all backends, and it
competes very well with DPC++.

AMD Radeon Pro VII

B

w

Speedup over AdaptiveCpp 23.10 (higher is better)

Figure 7: Performance comparison of AdaptiveCpp and DPC++ on AMD GPU
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Figure 8: Performance comparison of AdaptiveCpp and DPC++ on Intel GPU
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Recently, we have also started to introduce the first optimizations for a more aggressive setting
of an adaptivity level of 2. At a level of 2, AdaptiveCpp is free to employ optimizations that are
expected to come with additional JIT costs, kernel launch latencies or might need more
application runs to achieve peak performance. At this setting, AdaptiveCpp will analyze at
runtime the usage patterns of arguments that get passed into kernels. If it detects that specific
values are commonly used as arguments, it hardwires them as constants at JIT-time, compiling
a new, specialized kernel. Because the LLVM optimization pipeline is only run after this
process, the value will be propagated as a constant throughout the code, which could lead e.g.
to dead code elimination or reduced register usage. This idea is similar to specialization
constants from the SYCL 2020 specification, except that it happens automatically. Effectively,
this feature enables not only constant propagation across the host-device boundary, but also
the propagation of runtime values which are de-facto constants into device code as constants.

The detection of these common kernel arguments is enabled by storing a persistent,
application-specific database containing statistical information on kernel invocations and
kernel arguments on disk. Kernels are again identified using the 128-bit hash of the kernel
configuration. This allows AdaptiveCpp to learn across multiple application runs which kernel
argument values might be worth JIT-compiling a dedicated kernel for. Because it is in general
impractical to store data on every different value that has ever been passed into the kernel,
heuristics are employed to evict information on kernel arguments that have not been used in a
while from the database.

This feature is very new, and the performance evaluation is still ongoing. The primary cost of
this optimization is a slight additional kernel launch latency, as for every kernel launch, the
kernel arguments must be investigated and processed to decide whether to attempt to launch
a generic or a specialized kernel. Because a new kernel is only JIT-compiled when a kernel
has already been invoked a substantial number of times with the same argument, the additional
JIT overhead so far appears to not matter much for the averaged performance, especially over
the course of multiple application runs. Performance-wise, the benefit of this feature seems to
highly depend on the code and the target hardware. We see benefits especially for compute-
bound applications, e.g. miniBUDE improving performance by ~10% on NVIDIA or ~30% on
an Intel iGPU. For the future, additional optimizations at adaptivity level 2 are planned.

3.4 User-driven runtime modification of kernels

In addition to these automatic JIT optimizations, we have also introduced APIs to leverage the
JIT compiler more explicitly. This is targeted at users who wish more control for optimizations.

Firstly, wrapping a kernel argument in a new sycl::specialized type is interpreted as a hint to
the runtime to generate a new kernel that has the value of this argument hardwired as a
constant. This is a very similar use case as the SYCL 2020 specialization constant API.
However, our APl was developed to address shortcomings of the API in the SYCL specification:

e The SYCL API requires explicit get and set calls to set and retrieve and set the value,
and all accesses need to be funneled through an additional kernel_handler argument
that is passed to the kernel. This design makes it cumbersome both for the user to use
and for the implementer to implement;

e Whenever a JIT compiler is unavailable (e.g. in an ahead-of-time compilation scenario)
specialization constant support must be emulated. The additional indirection through
the kernel_handler object can in this case lead to substantial performance overheads,
especially since specialization constants are typically used in the hottest parts of the
code.
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Our sycl::specialized extension avoids both problems: It is very convenient and easy to use,
and, if no JIT compiler is available, it incurs no additional overhead compared to a regular
kernel argument. We therefore plan to propose this extension for standardization in future
versions of SYCL.

The second feature to expose the JIT compiler to users that we have added is the experimental
ability to modify function calls at runtime. Users can at runtime instruct the JIT compiler to
replace calls to a function A with another function B, or replace all calls to function A with a call
sequence to other functions B and C. Once the calls have been replaced, there is no overhead
compared to a regular function call. This feature, which we call **dynamic functions”, effectively
allows for a runtime assembly of kernels. Users can use it to implement a form of JIT-time
polymorphism, where kernel behavior needs to change based on runtime values. Since
function calls can also be replaced by call sequences to other kernels, kernel-fusion-like
semantics are also possible. This feature is currently available in an experimental state for
users to evaluate.

3.5 Standard C++ parallelism offloading support

Based on user feedback, and because we believe that the infrastructure will be useful for other
SYCL-related work in the future, we have added support for offloading calls to C++ parallel
STL algorithms on top of our SYCL compiler and runtime infrastructure.This allows users to
formulate their program in terms of high-level C++ algorithms such as std::for_each, std::copy
or std::transform_reduce, but still drop to the lower-level SYCL layer as more control is needed,
e.g. for optimizations. This can be beneficial for programmer productivity in general, as well as
accessibility of heterogeneous computing to programmers who lack deeper expertise.
Because not everything can be expressed with standard C++ algorithms that can be expressed
with SYCL, the SYCL layer is still very much needed and we see the two approaches as
complementing each other. The AdaptiveCpp standard C++ algorithms are supported with our
generic JIT compiler on all backends, including OpenCL via the construction kit, and thus
eventually RISC-V hardware. Our publication on the matter [1] discusses the implementation
detail.

Because C++ has a flat memory model, it is unaware that there might be multiple devices in
the system with distinct memory spaces. Therefore, a primary challenge for the C++ standard
parallelism model for offloading is that of making all system memory device-accessible. In
some cases, e.g. when host and device are tightly integrated and share the same physical
memory, or Linux HMM (heterogeneous memory management) is enabled, this might just work
out of the box. In other cases, the compiler and runtime will have to remap all memory
allocation and deallocation requests to device-aware variants. AdaptiveCpp does this by
remapping allocations to sycl::malloc_shared, which returns allocations that may automatically
migrate between host and device. This remapping is non-trivial, and we refer to [1] for details.

AdaptiveCpp employs additional optimizations that are not implemented by C++ standard
parallelism offloading compilers from hardware vendors (NVIDIA’s nvc++, AMD’s roc-stdpar,
Intel’'s icpx/DPC++). This includes automatically emitting prefetch operations to migrate data
used by kernels, to elide unnecessary synchronization at the end of kernels, and an offloading
heuristic that attempts to estimate whether it is worth offloading a C++ standard algorithm on
the device, as opposed to the host.

Because in standard C++ parallelism math functions or other functionality like atomics needs
to work in terms of functionality from the std:: C++ namespace, not the sycl:: namespace, we
have added additional compiler transformations that remap C++ std math functions to
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AdaptiveCpp math builtins and std atomic functionality to AdaptiveCpp atomic builtins. This
allows using std:: math builtins and std::atomic or std::atomic_ref to be used in device code.

Figure 9 illustrates the AdaptiveCpp standard C++ parallelism performance for three mini-apps
relative to the respective hardware vendor compilers and their support for standard C++
parallelism offloading. The red line indicates performance parity, and the blue line performance
within 20%. XNACK refers to a hardware feature on AMD GPUs that is required to enable
proper support for automatically migrating memory between host and device. Without, the
ROCm stack runs in a degraded mode. In our experience, XNACK is rarely available on most
production systems because it is not supported by all AMD GPUs, and requires non-standard
Linux kernel boot parameters.

AdaptiveCpp outperforms the vendor compilers on all platforms for two out of three mini-apps,
sometimes by an order of magnitude. As can be seen from the results, it is also less dependent
on the availability of XNACK on AMD hardware. Overall, the results indicate that AdaptiveCpp
can generate highly competitive code on all three platforms in the standard C++ parallelism
model, and is the only standard parallelism solution that can target them all robustly. These
results were obtained using the generic JIT compiler on all hardware.

3.0

c

S 5 &

3 2.5 ~ 2

v

o

T 2.0

(0]

>

2151

©

[ () R — | ——— —— e ——— o — —— ——— — e o ———————— i ———

N

r—c 10 e e S = L el ol =t o o e e

E ____________ - —— T — - s e s o e e G e - - -

2 0.5

h=

Q

e 0.0 T T T

CloverlLeaf Tealeaf miniBUDE

NVIDIA A100 s AMD Instinct MI100 AMD Instinct MI100 (XNACK) B |ntel Max 1550

Figure 10: Performance of AdaptiveCpp’s C++ parallelism on several GPU backends

3.6 Releases

Within the project time frame, there have been two releases:
e AdaptiveCpp 23.10 (Full release details:
https://github.com/Adaptive Cpp/AdaptiveCpp/releases/tag/v23.10.0)
e AdaptiveCpp 24.02 (Full release details:
https://github.com/Adaptive Cpp/AdaptiveCpp/releases/tag/v24.02.0)

AdaptiveCpp 24.06 is scheduled to be released in early July. In order to better structure
development and provide stronger guarantees for users, a fixed for month release schedule
was adopted, with the next release after 24.06 being planned in late October (version 24.10).
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At M18, both our compiler toolchains (DPC++ and AdaptiveCpp) have been significantly
advanced both in their support for RISC-V and in terms of new SYCL features. We have
integrated both compilers and performed end-to-end evaluation using v1.0 of SYCLOPS
platform as described in deliverable D3.1. All the work done on our compilers have already
been made publicly available in their respective Github repositories mentioned in this
document. We have also disseminated our work via technical blogs on OCK and AdaptiveCpp
on the SYCLOPS website, and technical talks that can be found in the SYCLOPS Youtube
channel.

4 Conclusion
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