%) SYCLOPS

Deliverable 2.2 — Cross-
architecture performance

modeling and profiling tools

codeplay’

EURECOM

Copyright © 2023 SYCLOPS | DELIVERABLE 2.2 — Performance profiling tools Page 1 of 19

%) SYCLOPS

%) SYCLOPS

Project acronym:
Project full title:

Call identifier:

Type of action:

Start date:

End date:

Grant agreement no:

SYCLOPS

Scaling extreme analYtics with Cross architecture
accelLeration based on OPen Standards

HORIZON-CL4-2022-DATA-01-05
RIA

01/01/2023

31/12/2025

101092877

D2.2 — Cross-architecture performance modeling and profiling tools

Executive Summary:

WP:

Author(s):

Editor:

Leading Partner:
Participating Partners:
Version:

Deliverable Type:

Official Submission
Date:

This deliverable outlines the work done on performance profiling and
monitoring tools in “Task 2.2: Benchmark specification and
performance profiling” in WP2 of the SYCLOPS project. The
SYCLOPS project has developed two key performance profiling and
analysis tools—the CARM Tool (developed by INESC) and Adaptyst
(developed by CERN).

2

Aleksander llic, Maksymilian Graczyk

Raja Appuswamy

INESC

CERN

1.0 Status: Draft

R Dissemination Level: PU
06-Oct-2025 Actual Submission 30-Sep-2025

Date:

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools

Page 2 of 19

%) SYCLOPS

Disclaimer

This document contains material, which is the copyright of certain SYCLOPS contractors, and may not
be reproduced or copied without permission. All SYCLOPS consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information
contained in this document may require a license from the proprietor of that information. The
reproduction of this document or of parts of it requires an agreement with the proprietor of that
information.

The SYCLOPS consortium consists of the following partners:

Partner Organisation Name Partner Organisation Short Country
Name
1 EURECOM EUR FR
2 INESC ID - INSTITUTO DE INESC PT
ENGENHARIADE
SISTEMAS E COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA
3 RUPRECHT-KARLS- UHEI DE
UNIVERSITAET HEIDELBERG
4 ORGANISATION EUROPEENNE CERN CH
POUR LA RECHERCHE
NUCLEAIRE
5 HIRO MICRODATACENTERS B.V. HIRO NL
6 ACCELOM ACC FR
7 CODASIPSRO CsIP Cz
8 CODEPLAY SOFTWARE LIMITED CPLAY UK

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools

Page 3 of 19

%) SYCLOPS

Document Revision History

Version Description Contributions

0.1 Structure and outline EUR
0.2 CARM tool contribution INESC
0.3 Adaptyst contribution CERN
1.0 Final draft EUR
Authors
Author Partner
Aleksander llic INESC
Maksymilian Graczyk CERN
Reviewers
Vincent Heuveline UHEI
Danilo Piparo CERN
Nimisha Chaturvedi ACC
Martin Bozek CSIP

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 4 of 19

%) SYCLOPS

Table of Contents

1
2

3
4

5

10 o [8 o (o] o TR 7
(@Y 1V R 1o To | PP 8
2.1 Background and related WOTKcoi i e e e e e e e et 9
2.2 CARM TOOl: HIgh-I€VEl OVEIVIEWeuniiieeeieeeiei et e e et e e e e e e e e e e e e 9
2.2.1 Automatic BENCNMAIKING.......coiiiiiiiiiiiiiiiiiieee ettt 10
2.2.2 APPIICALION ANAIYSIS ...coeiiiiiiiiiiiieee et 11
2.2.3 GraphiCal USEr INTEITACE.uuiii e e e e e e e e e e et eeaae s 11
2.3 EXperimental ValidatioNooiiiiiiiiii e e e e e e e e 12
2.3.1 CARM Benchmarking RESUILSccoiviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 12
2.3.2 CARM Benchmark Validationcouiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 14
Yo F= 042 S PSSRPPPPRPPIN 15
L g IO ... 17
4.1 Adaptyst using CARM TOOIoooiiiiiiii 17
4.2 CARM TOOI USING AQAPLYST ..ceviiiiiii e e e e e et s e e e e e e e e et e e e e e e e e eartraaeaaaaeas 18
L@ 0] T 1113 o) o 19

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 5 of 19

%) SYCLOPS

This deliverable outlines the work done on performance profiling and monitoring tools in “Task 2.2:
Benchmark specification and performance profiling” in WP2 of the SYCLOPS project. The SYCLOPS
project has developed two key performance profiling and analysis tools—the CARM Tool (developed by
INESC) and Adaptyst (developed by CERN).

Executive Summary

With the CARM tool, we have developed portable microbenchmarks to generate the CARM model for
mainstream CPU architectures, including Intel, AMD, ARM, and especially RISC-V processors that are
used in SYCLOPS. We have integrated performance counter (PMU) and DBI analysis of applications to
examine performance within the scope of the CARM model. All these features have been implemented
into a single solution, providing a one-stop shop for CARM-related analysis, complete with a Graphical
User Interface (GUI) to facilitate usage and visualization of results.

With Adaptyst, we have developed an open-source and architecture-agnostic performance analysis tool
designed to be portable across programming languages, including C++ with SYCL. Adaptyst supports
sampling of both on-CPU and off-CPU activity for all threads and processes of a given program. It can
produce data for rendering interactive non-time-ordered and time-ordered flame graphs using a separate
tool called Adaptyst Analyser. It also supports custom "perf" events (like performance counters) for
analyzing low-level software-hardware interactions. It has been extensively tested on the x86-64, arm64,
and RISC-V instruction set architectures available in SYCLOPS EMDC and beyond.

Both these tools are available as open source software in their respective Github repositories mentioned
in this deliverable. Substantial dissemination work has also been undertaken to promote their uptake.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 6 of 19

%) SYCLOPS

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer,
(i) platform layer, and (iii) application libraries and tools layer.

1 Introduction

:
: | Autonomous systems |

; | High-energy physics analysis | Applications

Precision oncology

pOrtDNN Libraries & |

i o e e ey : TOOlS i

RISC-V
RVV accelerator

Figure 1. SYCLOPS architecture

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and
provides heterogeneous hardware with a wide range of accelerators from several vendors.

Platform layer: The second layer from the bottom, the platform layer, provides the software required to
compile, execute, and interpret SYCL applications over processors in the infrastructure layer. SYCLOPS
will contain oneAPI DPC++ compiler from CPLAY, and AdaptiveCpp from UHEI In terms of SYCL
interpreters, SYCLOPS will contain Cling from CERN.

Application libraries and tools layer: While the platform layer described above enables direct
programming in SYCL, the libraries layer enables API-based programming by providing pre-designed,
tuned libraries for various deep learning methods for the PointNet autonomous systems use case (SYCL-
DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel algorithms for
scalable genomic analysis (SYCL-GAL).

This deliverable presents the work carried out in performance profiling and analysis tools as highlighted
in Figure 1.1 in the context of “Task 2.2: Benchmark specification and performance profiling” of the
SYCLOPS project. This document provides a high-level overview of the work done on the two performance
profiling tools that were developed in the SYCLOPS project, namely, the CARM tool by INESC and
Adaptyst by CERN.

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level overview of the
overall SYCLOPS architecture and positions this deliverable with respect to both components in the
SYCLOPS stack and WP/tasks in the work plan. Section 2 provides an overview of the work done on the
CARM tool. Section 3 provides an overview of Adaptyst. Section 4 describes the work on “integrating” the
two orthogonal pieces of work, demonstrating how both tools benefited each other to provide a holistic,
unified framework for profiling software developed in SYCLOPS and beyond.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 7 of 19

%) SYCLOPS

To tackle the objectives of in the SYCLOPS project, especially the ones envisioned with the WP2, Task
2.2, the INESC-ID partner has focused on investigating the performance models, profiling and
instrumentation tools. To this respect, the roofline model is of particular interest! - a performance model
known for its easy-to-understand guidelines and useful insights into what bottlenecks are constraining
application performance on a given system, such as the Original Roofline Model (ORM)?, and the Cache-
Aware Roofline Model (CARM)?.

2 CARM Tool

These types of models have varying levels of difficulty in their implementation to be generated for a given
system. For example, a fully-compliant ORM implementation requires measuring the memory traffic
between cache levels, usually done via cache simulation, which is very time-consuming and architecture-
dependent. On the other hand, the CARM requisites are less complex to be made portable across various
architectures, since the CARM relies on microbenchmarking data for various ISAs. In fact, the CARM is a
widely used roofline model due to its ability to provide a more detailed look at an architecture by
considering the diverse characteristics of the memory subsystem, which typically varies across different
levels in terms of size, bandwidth, and latency.

Currently, the CARM is supported for Intel architectures via Intel Advisor, while the ORM has rudimentary
support in AMD via AMD uProf. These are closed-source tools, while open-source tools like the Empirical
Roofline Tool (ERT) are also available but their support is mostly focused on x86-64 architectures, and
they do not provide accurate benchmarking mechanisms for architecture maximum performance
exploration. The developments in the SYCLOPS project reported in this deliverable aim to close this gap
in availability for different architectures such as AARCH64 and RISCV64 by developing an easy-to-use
open-source portable tool, that is able to generate the CARM for various architectures based on
automatically generated tailored assembly microbenchmarks and also provide application analysis in the
context of CARM, with a Graphical User Interface (GUI) to further facilitate the visualization of results.

The main contributions of this CARM Tool are as follows:
e Establishing a cross-architecture microbenchmark methodology;

e The development of portable microbenchmarks to generate the CARM model for various
mainstream CPU architectures, such as the most recent Intel, AMD, ARM, and RISC-V processors;

o The integration of performance counter and DBI analysis of applications to then examine in the
scope of the CARM model;

¢ The implementation of these various features into a single tool, providing a one-stop shop for
CARM-related analysis, with a GUI to facilitate usage;

e Analysis of different architectures and applications using said tool, with promising results
accurately reaching architectural limits.

These contributions are publicly available at and have been
disseminated in the following scientific publications:

e Morgado, J., Sousa, L. and llic, A.. CARM Tool: Cache-Aware Roofline Model Automatic
Benchmarking and Application Analysis. In 2024 IEEE International Symposium on Workload
Characterization (IISWC) (pp. 68-81). IEEE, 2024

1S. Williams, A. Waterman, and D. Patterson, "Roofline: An insightful visual performance model for multicore
architectures," Communications of the ACM, vol. 52, no. 4, pp. 65-76, 2009.

2A. llic, F. Pratas, and L. Sousa, "Cache-aware roofline model: Upgrading the loft," IEEE Computer Architecture
Letters, vol. 13, no. 1, pp. 21-24, 2013.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 8 of 19

https://github.com/champ-hub/carm-roofline

%) SYCLOPS

¢ Kabadzhov, I. D., Morgado, J., llic, A., and Appuswamy, R. Open, cross-architecture acceleration
of data analytics with SYCL and RISC-V. In Proceedings of the 23rd International Workshop on
Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms, collocated with
Euro-Par, August 26, 2025, Dresden, Germany.

¢ Rodrigues, A., Sousa, L. and llic, A. “A Performance Modelling-Driven Approach to Hardware
Resource Scaling”. In European Conference on Parallel Processing (pp. 143-154), Cham: Springer
Nature Switzerland, 2023

2.1 Background and related work

The roofline model' has become a widely used performance model in HPC, correlating system
performance with Arithmetic Intensity (Al). In particular, the Cache-Aware Roofline (CARM)? evaluates all
load/store operations across the entire memory hierarchy in a single plot, providing a true application Al
and allowing insight into application-specific load/store ratios, port utilization, ISA precision, and data
widths. Its single-plot nature maintains the roofline’s simplicity while improving accuracy and usability, as
evidenced by its full integration into Intel Advisor.

CARM analysis categorizes applications into memory-bound, compute-bound, or mixed regions.
Applications in the memory-bound region benefit from optimizing memory accesses, while compute-bound
workloads require better arithmetic unit utilization. Mixed workloads may benefit from both. To construct
these roofs, assembly-level microbenchmarks measure sustainable bandwidth at each memory level and
peak FP performance. These microbenchmarks stress cache hierarchies and arithmetic pipelines, with
results validated using performance counters. From these, performance limits are expressed as:

Fa=min(Fp,BLx — C x Al),
where Fp is peak FP performance and BLx — C the sustainable bandwidth of memory level x.

Architectural differences strongly impact these values. For instance, Intel Skylake-X achieves 192 B/cycle
L1 bandwidth with AVX-512, while AMD Zen 3 sustains 96 B/cycle with AVX2. ARM Vulcan and RISC-V
C920, with fewer load/store units and narrower SIMD (NEON, RVV), sustain only 32 B/cycle. All include
two FMA-capable FP units, doubling peak throughput with each wider SIMD extension. However, vendor-
reported “peak” metrics rarely align with sustained real-world performance, reinforcing the need for
empirical benchmarking.

2.2 CARM Tool: High-level overview

The proposed CARM tool comprises a set of independent modules to provide a complete CARM-based
profiling ecosystem, as shown in Figure 2. The tool offers both a command-line and a graphical user
interface (GUI) for interaction, allowing users to access stored results from benchmarking and application
analysis. Whether activated through the command line or the GUI, the automatic benchmarking and
application analysis modules execute user-specified tasks and automatically save the results, which can
be visualized within the GUI or as SVG graphs.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 9 of 19

%) SYCLOPS

CARM| MEM | Mixed

Automatic
Benchmarking

Y

Command Line
Interface

Figure 2. CARM Tool Modules

2.2.1 Automatic Benchmarking

The Automatic Benchmarking module in the CARM tool is managed through a Python script that
coordinates automatic benchmark generation and execution. This module conducts various benchmarks
to assess memory bandwidth and peak FP performance using automatically generated, tailored assembly-
level microbenchmarks across multiple supported microarchitectures. Benchmarks include roofline, multi-
level memory bandwidth discovery (referred to as memory curve benchmarks), and mixed-instruction
types, detailed via microbenchmarks tailored to specific user-selected options and target specifications
provided to the Python script via arguments.

The --test argument specifies the benchmark type, such as roofline for comprehensive CARM results, or
specific cache levels (L1, L2, L3, DRAM) and FP for focused tests. The MEM option triggers memory
curve benchmarks, while mixedL1, mixedL2, mixedL3, and mixedDRAM target mixed benchmarks,
which interleave FP operations with memory accesses at specific memory levels. The --ISA argument
selects ISA extensions for analysis, offering scalar and vector options like SSE, AVX2, AVX512 (x86-64),
Neon (ARM), and RVV0.7/1.0 (RISC-V). The default auto option detects and benchmarks available ISAs.
Data precision can be toggled between double and single precision using the --precision argument, and
the --threads argument specifies thread counts for multi-core benchmark execution. The --Id_st_ratio
argument configures the ratio of load to store instructions, while the --only_Id and --only_st flags create
benchmarks with only load or only store instructions, enabling detailed bandwidth comparisons.

a) Roofline Benchmarks: Roofline benchmarks focus on memory levels and two FP benchmarks. The first
FP benchmark can be configured to use addition, division, or multiplication instructions via the --inst
argument, while the second always uses FMA. For memory benchmarks, cache sizes are automatically
detected on x86-64 systems using the cpuid instruction, while they can be manually specified for
AARCHG64 or RISCV64 via a config file or command-line arguments. Results are stored in CSV files,
including memory bandwidth (in GB/s and IPC) and peak FP performance (in GFLOPS and IPC). These
can be visualized in the GUI (see Figure 3).

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 10 of 19

%) SYCLOPS

s Cache Aware Roofline Model

128

Q AVX2 FMA
o e 8-
Z = S P — i AVX2 A
= i lar FMA
3 15/ = (bt Scala
—= e ©
é 8 _;‘___"_._'v._.-!m_'_._,___'_,_‘_'_,_‘_'_,_‘_'_S,c_:.a_la_r,Ag_d_,
g 4
7]
e 2’ _.-—".-".
1
0.03125 0.0625 0.125 0.25 0.5 1 2 4 8
Arithmetic Intensity

@ Scalar FMA @ AVX2 FMA AVXZ —— 1 —— 12 = = (3 ==== DRAM —-— add
7 Scalar Add @ AVX2 Add Scalar =——11 —— 2 = = |3 ----- DRAM —-=— add

Figure 3. CARM mixed benchmark results and GUI

b) Memory Curve and Mixed Benchmarks: Memory curve benchmarks analyze bandwidth across a wide
range of problem sizes (2 KB to 512 MB), measuring bandwidth and IPC variations. Results are stored in
CSV files and visualized as SVG graphs, with cache sizes optionally included. Mixed benchmarks combine
memory and FP operations, targeting specific memory levels. Users can adjust the FP-to-memory ratio
and select FP instruction types. Results include Al and GFLOPS metrics, stored in CSV files and visualized
in the GUI as CARM graph points (Figure 3). Together, these benchmarks provide a comprehensive view
of system performance.

2.2.2 Application Analysis
The proposed CARM tool supports in-depth application profiling via two subsystems: DBl and PMU.

DBI-based profiling is managed via a custom DynamoRIO client or Intel SDE. DynamoRIO supports
dynamic opcode counts on x86-64 and AARCHG64 (with early RISC-V support), while SDE is limited to
x86-64. Users provide the executable path and select DynamoRIO or SDE, specifying installation paths.
DynamoRIO is available via download or source compilation, while SDE is distributed as a binary release.

The tool supports Region of Interest (ROI) profiling, enabled through a header file providing API functions
(carm_roi_start(), carm_roi_end()). ROI instrumentation measures execution time and categorizes
opcodes by type and ISA, enabling detailed FP and Al calculations. Results are stored in CSV files and
visualized in the GUI.

PMU-based profiling leverages the PAPI high-level APl (PAPI_hl_region_start(), PAPI_hl_region_end())
to calculate Al and GFLOPS for ROI-based application profiling. Future integration with tools like Likwid
or Perf may extend this to full-application profiling. PAPI monitors events such as PAPI_LST INS
(load/store instructions), PAPI_SP_OPS (single precision operations), and PAPI_DP_OPS (double
precision operations). Each experiment is repeated three times to avoid multiplexing issues, ensuring
accurate results without statistical assumptions. Results are integrated into the GUI, similar to DBI
profiling.

2.2.3 Graphical User Interface

While all functionalities are available via the command line, the CARM tool also provides a browser-based
GUI (Figure 4). The GUI facilitates the configuration and execution of benchmarks, application analysis,
and result visualization. It has two main sections: (i) the main window for result visualization (outlined in
red), and (ii) a collapsible sidebar (outlined in blue) offering easy access to CARM features without
requiring the command line. This design allows users to benchmark, profile, and visualize results in one
place with an intuitive, user-friendly interface.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 11 of 19

%) SYCLOPS

Cache Aware Raofiine Model

Results Visualization

2 P
Al (Arithmetic Intensity)

Figure 4. CARM Tool GUI Overview

2.3 Experimental validation

This section presents the experimental results of this work, covering the benchmark outcomes of the
developed CARM and memory benchmarks within the CARM tool, as well as their validation through
various means, including benchmarks, DBI, and PMU analysis. The various environments used for
obtaining these experimental results, including Intel Xeon Gold 6140 (Venus) and 6528R (CSL), AMD
Threadripper PRO 5975WX (Cara), ARM Cavium ThunderX2 CN9980 (Armq), RISC-V MilkV Sophon
SG2042.

2.3.1 CARM Benchmarking Results

80— i i
420 | — scalar oo \ — scalar
b — ssE 350/ \ |~ SSE
360 1 — AVX2 300 \ I —— AVX2
]]
300 oo AL \ ! CARA
w
200 i I VENUS o \ ;
S0 i 150 S i
Sur——— b — ! Loo—— | Ty '
o - I— I I e <SS S S 1
_g 60 ~ ' 50
[= B s s s e e | L
& 8ol i 32 o T]
S 7 | | — scalar 28 N |— scalar
g : —— Neon 24 :7 RV
60
2 ! ARMQ \ ! MILKV
g 50 i 20 \ i
40| ; 16 \ : ‘
Emenmaes AEEEE
30 T : 12 | ‘
20 _ ‘ | 8 ! ‘
10 x 4 ™ i
‘L -ﬁ;l;i::'l_—
L -] 2 2 ﬁ g g g g -] [- -] 2 E g

Figure 5. Memory curve benchmark results

x86-64 CPUs: For the x86-64 representation, the Venus and Cara machines were tested. The Venus
machine contains an Intel Skylake-X CPU which supports all x86-64 ISA extensions used by the CARM
tool, while the Cara machine contains an AMD Zen3 which supports up to AVX2. These CPUs both feature
two load and one store units per core, theoretically achieving up to three IPC at the L1 cache level.

In order to better assess the complete performance of their memory subsystem, the memory curve
benchmarks were conducted. These tests varied in load/store ratios, thread counts, and ISAs to measure
their effects on bandwidth and IPC, as detailed in the memory curve graph for a 2-load-to-1-store ratio on
one thread for all available ISAs (Figure 5). From the various load/store ratios tested, it was observed that
the two loads per store ratio produced the highest bandwidth and IPC values, matching the CPU’s

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 12 of 19

%) SYCLOPS

load/store unit ratio. Load-only and store-only tests produced IPC counts of two and one respectively,
which indicates the presence of two load and one store unit per core.

On Venus, however, during the two loads per store test, the maximum theoretical IPC of three was not
reached, only achieving a peak of 2.046 IPC. This value closely matches the sustained bandwidth
reported in the Intel Optimization Manual, of 2.078 IPC, with only a 1.54% deviation. For the L2 cache,
while the manual cites a bandwidth of 0.813 IPC, our load-only benchmarks showed higher IPCs up to
0.964. L3 bandwidth analysis was complicated due to the small 1408 KB L3 slice per core. Tests with a
1216 KB data size, fitting between L2 and L3 limits, recorded a 0.194 IPC, 17% below the reported 0.234
IPC for L3.

Testing on the Cara machine yielded similar results. While there are no official sustained bandwidth values
reported by AMD, the memory benchmarks managed to reach three, one, and 0.7 IPC for the L1, L2, and
L3 memory levels, which closely match the theoretical architectural limits of the Zen3 architecture, with
only the L3 result being 30% below the theoretical maximum.

After analyzing the memory subsystem, we turn to the FP performance of the Skylake-X and Zen3 CPUs,
which, with two FP units per core capable of AVX-512 and AVX2 operations respectively, can theoretically
reach up to 2 FP IPC. To verify this, the FP CARM benchmarks were executed for both AVX512 and
Scalar on Venus. Results showed IPC counts of 1.88 and 1.98 for AVX512 and scalar respectively,
indicating that while not perfectly achievable, we are able to get close to the theoretical 2 FP IPC,
especially for the scalar instructions. On Cara, two FP IPC were accurately reached, matching the
expected theoretical maximums. From this analysis, we can conclude that the CARM benchmarks on the
x86-64 architectures are showing promising results, closely following the theoretical limits of the Skylake-
X and Zen3 CPUs. These benchmarks will be validated in the next section via various methods, to confirm
that these measured values actually correspond to the real execution of the instructions in the assembly
microbenchmarks.

AARCH64 CPUs: The ThunderX2 CPU on the Armg machine was also benchmarked. Equipped with the
Neon SIMD extension, it has two load/store units capable of executing Neon operations, theoretically
achieving up to two memory IPC. To explore these limits, memory curve benchmarks were conducted
across various load/store ratios, in a similar fashion to the tests for x86-64. These benchmarks indicated
that the load-only ratio performed the best on Armg.

The load-only ratio benchmark reached an IPC of two, closely matching the expected IPC. Using only
stores resulted in an IPC of one, suggesting that only one of the load/store units in the CPU is capable of
performing store operations. This discrepancy explains the stability of the load-only results, as introducing
store instructions appears to cause conflicts within the dual-capable load/store unit. Furthermore, despite
the ThunderX2 reportedly having a 64 bytes per cycle bandwidth to the L1 cache, suggesting a theoretical
IPC of four, the practical IPC drops below one when accessing the L2 cache and decreases further with
L3 cache usage.

The Armqg CPU, equipped with two Neon-capable FP units per core, theoretically achieves an IPC of two
for FP arithmetic. The FP CARM benchmarks, executed for both Neon and scalar extensions, show
measured IPC values closely aligned with the theoretical two IPC, exhibiting an average deviation of
0.6883%.

RISC-V CPUs: The Sophon SG2042 CPU in the MilkV machine contains a reported two load/store units
per core, suggesting a theoretical IPC of two. Memory curve tests using the RVV extension indicate a
peak IPC around one using a two loads per store ratio, which was the best-performing ratio. This suggests
the presence of only one effective load/store unit. Furthermore, store-only benchmarks consistently
showed an IPC of about 0.5 across various data sizes, spanning from within the L1 cache limits to most
of the L3 cache capacity.

This trend is likely influenced by the C920 core’s adaptive write-allocate policy [18], in conjunction with a
16 MB write buffer, which maintains steady bandwidth measurements across most data sizes. For FP
performance, the MilkV machine, with two RVV-capable FP units per core, achieves an IPC close to two,

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 13 of 19

%) SYCLOPS

as confirmed by CARM FP benchmarks with a minimal deviation (0.77%) from the theoretical maximum
for both RVV and scalar instructions.

2.3.2 CARM Benchmark Validation

The validation of these benchmarks must be conducted to ensure the obtained results are indeed
representative of the peak performance of the various machines.

Examining the AMD Zen3 CPU on the Cara machine via mixed benchmarks (Figure 2), which allow users
to adjust the FP-to-load/store instruction ratio of benchmarks targeting a specific memory level, provides
insight into performance when stressing both memory and FP units.

By using mixed benchmarks, we can visualize the system performance when both subsystems are
stressed simultaneously, which should still allow the CPU to reach near the limits set by the CARM
benchmarking. The Zen3 CPU, with an optimal ratio of two loads per store, executed various mixed
benchmarks ranging from 0.0417 to 0.25 Al for addition and 0.0833 to 0.5 Al for FMA instructions.

Mixed benchmarks targeting the L1 cache incrementally increased the FP instruction ratio to a maximum
of 12 per three memory operations, capturing critical performance points around the ridge point of the
CARM where FP limitations start to dominate. These benchmarks, executed on the Cara machine using
AVX2 and scalar instructions on one thread, showed that the Cara machine closely approached the CARM
limits from previous CARM benchmarking, as illustrated in Figure 6, where each dot corresponds to a
mixed benchmark execution of a particular Al.

Errors in AVX2 were lower, averaging 13.69% for FMA and 0.16% for addition, compared to scalar
benchmarks which showed errors of 13.97% and 1.11% respectively. While errors were considerably
greater for FMA instructions in both cases, this suggests that less complex operations like addition
maintain performance better under mixed conditions.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 14 of 19

%) SYCLOPS

Adaptyst is an open-source and architecture-agnostic performance analysis tool designed to be portable
across programming languages (including C++ with SYCL). In its current development stage, it runs on
Linux, is based on “perf” with the custom patches, and:

3 Adaptyst?

e samples both on-CPU and off-CPU activity of all threads and processes of a given program,

e minimises the risk of incorrectly-collected stack traces as long as the program is compiled with
frame pointers (this is done by detecting improper CPU and kernel configurations),

e produces data for rendering interactive non-time-ordered and time-ordered flame graphs in a web
browser using a separate tool called Adaptyst Analyser,

e supports custom “perf” events (e.g. performance counters) based on sampling for analysing low-
level software-hardware interactions,

e integrates with CARM Tool to provide cache-aware roofline insights into the program (see the next
chapter for more details),

e s tested on the x86-64, arm64, and RISC-V instruction set architectures.

Figure 1 presents the general flow of Adaptyst. The user starts the tool by executing the “adaptyst”
command, which runs “adaptyst-server” in the background by default (there’s also an option of putting
“adaptyst-server” on another machine and connecting to it via TCP) and configures “perf’. Afterwards,
profiling events are pre-processed by special Adaptyst Python scripts in real-time with the help of “perf’
and streamed to “adaptyst-server” (via file descriptors or TCP), which carries out proper processing, e.g.
producing flame graph data and saving everything to persistent storage.

configures processes

and runs skeams data fo data for []M’m

Figure 6: Adaptyst flow.

The output format is open and non-encrypted, it can currently be inspected by checking out the Adaptyst
source code. The performance analysis results are usually inspected by a dedicated tool called Adaptyst
Analyser: it renders an interactive website showing the timeline view with a tree of threads/processes,
each containing on-CPU and off-CPU runtime lengths along with (if available) flame graphs, spawning
stack traces, corresponding source codes of a profiled program. In case of having run roofline profiling
(with the help of CARM Tool benchmarks), a cache-aware roofline graph can be also displayed, with code-
segment-specific points plotted by the user. A screenshot of the sample website is shown in figure 2.

Even though Adaptyst is a code profiler in the current stage, its future roadmap goes beyond profiling: the
goal of the project after SYCLOPS is becoming a comprehensive performance analysis and full-stack
system design/compilation tool. Specifically, the plan is making Adaptyst generate the most optimal
software-hardware solution for any given user workflow from anywhere in the computing spectrum (from
embedded to distributed/high-performance computing) while taking into account all sides of computation:
software optimisations, hardware customisations, choosing compute units from CPUs, GPUs, FPGAs etc.,
planning out storage and networking, designing memory hierarchies etc.

3The contents of this chapter are based on the Adaptyst website made as part of SYCLOPS:
https://adaptyst.web.cern.ch (access: 24/09/2025)

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 15 of 19

https://adaptyst.web.cern.ch/

) SYCLOPS

Adaptyst Analyser

‘ 0: [syclops-gentoo-profiling1] cmsRun (2025-05-06 13:30:40)

©C M

Red parts are on-CPU and blue parts are off-CPU. Right-click any thread/process to open the details menu.

v cmsRun (7152/7152)
sh (7232/7232)
rocmisEnabled (7233/7233)
»sh (7234/7234)

» sh (7236/7236)
» sh (7240/7240)
cmsRun (7152/7242)
»-Idd (7243/7243)

vomsRun (7152/7248) ii; /* Obtain the main mai of the executable */

»cmsRun (7152/7250) /* DT _PREINIT ARRAY is not processed here. It is already handled in
dl_init in elf/dl-init.c. Also see the call init function in
»cmsRun (7152/7252) the same file. */

®Runtime: 308.232 s
_ (sampled: ~298.824 s)

_ Flame graphs

n: 0] Code preview

| tusrssrerdebugrglibe-2.34-125.19.1.alma. 2 x86_64/csu../esuflibe-start.c v || original

125call_init (int argc, char **argv, char **env)
126

3
FamE if (ELF INITFINI & 1->1 info[DT INITI != NULL)
[Session: 0] Flame graphs for cmsRun (7152/7152) cox DL_CALL DT INIT(1, 1->1 addr + 1-»1_info[DT _INIT]->d un.d ptr,

argc, argu, env);
‘Some blocks may be collapsed to speed up rendering, but you can expand them by clicking them. ¢ ¢
—_— ELfW(Dyn) *init_array = 1->1_info[DT_INIT_ARRAY];
| wall time (ns) v | (] Time-ordered ‘Sear(h‘ | 2 if (init_array - nNULL)

unsigned int jm
= 1->1_infolDT_INIT_ARRAYSZ]->d_un.d_val / sizeof (ELfW(Addr));
ELfW(Addr) *addrs - (void *) (init array->d_un.d_ptr + L->1_addr);
for (unsigned int j = 0; j < jm; ++)
((dLinit t) addrs[j]) (argc, argy, env);
}

HEEEN
]
:

149#else /* !SHARED */
150

151/* These magic symbols are provided by the linker. */
152extern void (*_preinit array_start [1) (int, char **, char +*}
153 attribute hidden;

154extern void (* preinit array end [1) (int, char **, char **)
155 attribute hidden;

PyBind11Proc...
[l PyBindl1Proc...

edmplugin:Plug...
edmi:PoolSourc...
edm::RootPrima. .
edms:RootInput...

[]|
23
g2
E.—
B

Figure 7: Sample Adaptyst Analyser screenshot.

In the near future, the modular design of Adaptyst will be finalised and published, where functionality
related to performance analysis of a system/hardware component like a CPU will be delegated to separate
modules that can be developed by anyone. This will allow the project to keep up with the pace of the
market development, e.g. by establishing collaboration with hardware companies that would work on the
Adaptyst modules for their products.

Adaptyst has been disseminated in several events and through publications:
1. A poster at the ACAT’24 conference on 11-15 March 2024
2. Atalk at the Compute & Accelerator Forum at CERN on 8 May 2024

3. Atalk at the Open-Source RISC-V Software Workshop co-located with RISC-V Summit Europe 2024
on 28 June 2024

4. Atalk and a paper at the CHEP’24 conference on 19-25 October 2024

5. A poster and a paper at the IEEE HPEC 2025 conference on 15-19 September 2025, with the
Outstanding Short Paper Award

6. An all-day workshop at CERN dedicated to Adaptyst on 29 September 2025

7. The source code of Adaptyst is available on GitHub: https://github.com/adaptyst/adaptyst. More details
about the project can be found at the website: https://adaptyst.web.cern.ch.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 16 of 19

https://github.com/adaptyst/adaptyst
https://adaptyst.web.cern.ch/

) SYCLOPS

Adaptyst and CARM Tool have integrations with each other: the first section explains how Adaptyst can
use CARM Tool to provide cache-aware roofline insights into a profiled program and the second section
does a similar thing vice versa.

4.1 Adaptyst using CARM Tool

If enabled by the user, Adaptyst integrates with CARM Tool in two complementary ways: it calls CARM
Tool directly to obtain cache-aware roofline benchmark data for a specific machine and uses the expertise
of the authors of CARM Tool to profile a given program with roofline-specific “perf” events / performance
counters in mind.

4 Integration

When performance analysis results are opened in Adaptyst Analyser, it is possible to view various roofline
graphs produced by CARM Tool benchmarking. Additionally, the user can plot code segments from
thread/process flame graphs as points on the roofline graphs to quickly determine whether these are more
memory- or compute-bound. This fine-grained roofline analysis without requiring the user to specify code
regions explicitly is a feature which normally neither Adaptyst nor CARM Tool offers on its own. The
screenshot of a sample cache-aware roofline graph with code-segment-specific points is presented in
figure 3.

Adaptyst Analyser

0: [syclops-gentoo-profiling1] pthreads_intrisics (2026-04-03 12:11:33)

2 [

[Session: 0] Cache-aware roofline madel

|Session 0] Flarme graghs for pthreads_intris (19251/19330)
Some blocks may be coffapsed to speed wp rendering, bul you can axpamnd
Wl tima (ng) ~ Time-ordenad

[Session: 0) Flama graphs for plhreads_inris (19251/19334)

Some blocks may be colapsed to speed up rendenng, bul you can ox
Wall tir [rs] ~ Time-gedaned Soach

|Session: 0] Flame graphs for pthreads_intris (16251/19338)

Some blocks may be cofapsed lo speed up rendanng, but you o
‘Wl time (nd) ~ Time-ordened

Sears

BEF 00 00 00 S B2 53 CACMMBER

Figure 8: Sample cache-aware roofline graph with three code segments from three different
flame graphs plotted as points.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 17 of 19

%) SYCLOPS

4.2 CARM Tool using Adaptyst

The CARM Tool on the other hand has necessary facilities to read application traces and performance
data obtained using Adaptyst, which can be loaded into the CARM Tool GUI. This allows users to view
cache-aware roofline models for their system with application behaviour captured by Adaptyst, combining
low-level code profiling with CARM’s ease of use and insight on application optimization for a given
architecture.

Using the CARM GUI, users can visualize roofline graphs generated from the CARM Tools benchmarking
and Adaptyst’s profiling data. Code segments identified by Adaptyst can be plotted automatically in the
CARM, making it possible to assess whether they are compute or memory bound without having to define
regions of interest. The CARM Tool can also detected what kind of ISAs are used by an application
analyzed using Adaptyst and select the most appropriate CARM results to obtain an accurate analysis of
application bottlenecks.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 18 of 19

%) SYCLOPS

This deliverable concludes the work done in Task 2.2 of the SYCLOPS project. Through this work, we
have successfully developed and integrated two major performance profiling solutions: the CARM Tool
(by INESC) and Adaptyst (by CERN). The CARM Tool provides an open-source, portable platform for
generating the Cache-Aware Roofline Model (CARM), addressing the gap in tooling for architectures like
AARCH64 and RISCV64 by using cross-architecture microbenchmarking and integrating application
analysis via performance counters (PMU) and DBI. Adaptyst complements this by offering an architecture-
agnostic performance analysis tool that uses "perf' to sample on-CPU and off-CPU activity, generating
interactive non-time-ordered and time-ordered flame graphs.

5 Conclusion

The most significant achievement is the integration of these two orthogonal pieces of work, resulting in a
holistic, unified framework for profiling SYCLOPS software and beyond. This integration enables powerful
analysis: Adaptyst calls the CARM Tool to obtain architectural benchmark data, allowing the user to plot
specific code segments from flame graphs directly onto the roofline graphs for rapid assessment of
whether they are memory-bound or compute-bound. Conversely, the CARM Tool can read performance
data generated by Adaptyst, allowing users to visualize application behaviour alongside the CARM model
and automatically detect the Instruction Set Architectures (ISAs) used for accurate bottleneck analysis.

All the work done on these tools have already been made publicly available in their respective Github
repositories mentioned in this document. In addition to various dissemination efforts listed in this
document, we have also published technical blogs on CARM tool and Adaptyst on the SYCLOPS website,
and technical talks that can be found in the SYCLOPS Youtube channel.

Copyright © 2023 SYCLOPS | DELIVERABLEZ2.2 - Performance profiling tools Page 19 of 19

https://www.syclops.org/updates/
https://www.youtube.com/@syclopseu

