%) SYCLOPS

Deliverable 2.3 — Use case
Integration, validation,

and demonstration report

codeplay’

EURECOM

%7) SYCLOPS

Project acronym: SYCLOPS

Project full title: Scaling extreme analYtics with Cross architecture
accelLeration based on OPen Standards

Call identifier: HORIZON-CL4-2022-DATA-01-05
Type of action: RIA
Start date: 01/01/2023
End date: 31/12/2025
Grant agreement no: 101092877

D2.3 — Use case integration, validation, and demonstration report

Executive Summary: This deliverable is the final technical deliverable of the SYCLOPS
project and summarizes the work done in integrating various
components of the SYCLOPS hardware—software stack and deploying
them in the context of the three use cases.: Particle Acceleration (HEP),
Genomics, and Autonomous Systems. This document is a detailed
account of our integration work that concretely demonstrates that the
SYCLOLPS project has far exceeded the original KPI targets for each
use case, and in doing so, has successfully demonstrated the power of|
performance-portable, open-standard hardware acceleration.

WP: 2

Author(s): Jan Kastil, Martin Bozek, Fred Buining, Nimisha Chaturvedi,
Aleksander lllic, Maksymilian Graczyk, Monica Dessole,
Devajith Valaparambil Sreeramaswamy, Raja Appuswamy

Editor: Raja Appuswamy
Leading Partner: CERN
Participating All

Partners:
Version: 1.0 Status: Draft
Deliverable Type: R Dissemination Level: PU
Official Submission Actual Submission
Date: 31-Dec-2025 Date: 31-Dec-2025

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 2 of 44

%) SYCLOPS
Disclaimer

This document contains material, which is the copyright of certain SYCLOPS contractors,
and may not be reproduced or copied without permission. All SYCLOPS consortium partners
have agreed to the full publication of this document if not declared “Confidential”. The
commercial use of any information contained in this document may require a license from the
proprietor of that information. The reproduction of this document or of parts of it requires an
agreement with the proprietor of that information.

The SYCLOPS consortium consists of the following partners:

No. Partner Organisation Name Partner Organisation Country
Short Name
1 EURECOM EUR FR
2 INESC ID - INSTITUTO DE INESC PT
ENGENHARIADE
SISTEMAS E
COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM
LISBOA
3 RUPRECHT-KARLS- UHEI DE
UNIVERSITAET HEIDELBERG
4 ORGANISATION CERN CH
EUROPEENNE POUR LA
RECHERCHE
NUCLEAIRE
5 HIRO MICRODATACENTERS HIRO NL
B.V.
6 ACCELOM ACC FR
7 CODASIPSRO CsIP Cz
8 CODEPLAY SOFTWARE CPLAY UK
LIMITED

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 3 of 44

%) SYCLOPS

Document Revision History

Version Description Contributions

0.1 Skeleton template and outline EUR
0.2 Particle acceleration use case description CERN
0.3 Genomics use case description ACC, INESC, EUR
0.4 CPLAY use case description EUR
0.5 Infratructure integration HIRO, CSIP
1.0 Completed draft EUR
Authors

Author Partner

Jan Kastil CSIP

Martin Bozek CSIP
Fred Buining HIRO
Nimisha Chaturvedi ACC
Aleksander lllic INESC
Maksymilian Graczyk CERN
Monica Dessole CERN
Devaijith Valaparambil CERN
Sreeramaswamy
Raja Appuswamy EUR
Reviewers
Name Organisation |
Raja Appuswamy EUR
Aleksander lllic INESC
Vincent Heuveline UHEI
Nimisha Chaturvedi ACC
Stefan Roiser CERN

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 4 of 44

%) SYCLOPS

Table of Contents

A 1 0T ¥ Tod 1 (o] o R PP 7
2 Particle AcCeleration USE Case.........uuuiiiiiiiiiiiiiiiiiiiee ettt e eeee e 8
2.1 State-of-the-art Before SYCLOPSuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieriereeeeienneenrennrennnennnnnnes 8
Y O 115 To l [a1 (=To] = 11 0] o H PP PP PP PO POPPPPPPPPPPN 8
ZZRC T S0 @ N = @ 1@ 3 I V) (=T | =1 (o 10
2.4 Adaptyst and Energy Consumption Analysis Integrationcccccccevvvvivieeeeneennnnns 12
2.5 State-of-the-art After SYCLOPSouuiii e 18

3 GENOMICS USE CABSE ...ttt nns 19
3.1 State-of-the-art Before SYCLOPSoooiiiiiiiiiiiiiee e 19
3.2 Pre-processing ACCEIEIALIONcceii ittt e e e e e e e e 21
3.3 Variant calling aCCEIEratioNcooiiiuiiiiiiiie e 22
3.4 Integration and State-of-the-art After SYCLOPS ..., 22
3.4.1 Pipeling INtEGratioNccoiiiiiiiiiiie e 23
3.4.2 Pipeling EVAIUALIONc.cooiiiiiiiiiiiece et 23

4 AUtONOMOUS SYSIEMS USE CaASE ...ovuiiiieiii i ee et e e e e e e e e e e e et e e e e e e e 25
4.1 State-of-the-art Before SYCLOPS ...t 25
4.2 SYCLOmMAtC and SYCLCOMPAL.....cciiiiiiiiiiiiiiiieee et e e e e e e e e e e eeeee s 26
4.3 Merging portDNN and ONEDNNooiiiii e e e e e eeneens 26
4.4 State-of-the-art After SYCLOPScoooiiiieiiee e 27

5 Infrastructure & Platform TooIS INtegrationcccccuiiiiiiiiiiiiieeiiiiiee e 29
5.1 CSIP RVV Accelerator INtEgrationooeeoiiiiimiiiiieeeeeaeiiieee e e siineeee e e e 29
5.1.1 CSIP RVV Power estimation analySiscccovvuuiiiiiiiiiieecceecisen e eeeevins 29

5.2 CARM TooOl—CSIP INtegrationcccooeeeeiiiie e, 34
5.3 HIRO EMDC INtEGIALIONuviiiiiieiiiiiiitiieee e e e e et e e e et e e e e e e et eeeeeeeaaan 36
5.3.1 PCle Gen 6 Switch & CXL R&D for SYCLOPSocovviiiiiiiiiiiiieee e 36
5.3.2 PCle Gen 6 Switch DeVEelOPMENTveviiiiiiiiiieiiieeieeeeeeeeeeeeeeee e e 37
5.3.3 CXL RESEAICK ...t s 39
534 INtegration DEeMONSIFALIONoviiiiiiiiiiiei e 42

I ©o] o (1] o] o PP 44

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 5 of 44

%) SYCLOPS

Executive Summary

This deliverable is the final technical deliverable of the SYCLOPS project and summarizes the
work done in integrating various components of the SYCLOPS hardware—software stack and
deploying them in the context of the three use cases: Particle Acceleration (HEP), Genomics,
and Autonomous Systems.

In the HEP use case led by CERN, we have integrated SYCL support into the ROOT
framework, and the Cling interpreter, enabling interactive, hardware-accelerated data analysis
in Jupyter Notebooks. The newly developed GenVectorX library demonstrated up to 3.5x
speedup on heterogeneous backends and reduced energy consumption by ~73.9%.

In the genomics use case led by ACCELOM, we have developed SYCL-GAL, a library of
accelerated primitives that reduced total execution time for the GATK germline variant calling
pipeline by ~4.6x. Preprocessing stages saw an 11x improvement, and the core pairHMM
computation in variant calling stage was accelerated by two orders of magnitude, effectively
removing a major industry bottleneck.

In the autonomous systems use case led originally by CPLAY, and now by EUR after CPLAY’s
exit, we unified the portability of portDNN with the oneDNN ecosystem, allowing the PointNet
architecture to run across diverse hardware without code changes. Convolution kernels
optimized for RISC-V vector extensions achieved performance gains of up to 18.8x.

This document is a detailed account of our integration work that concretely demonstrates that
the SYCLOLPS project has far exceeded the original KPI targets for each use case, and in
doing so, has successfully demonstrated the power of performance-portable, open-standard
hardware acceleration.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 6 of 44

&) SYCLOPS

1 Introduction

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i)
infrastructure layer, (i) platform layer, and (iii) application libraries and tools layer.

!
; | Autonomous systems |

: | High-energy physics analysis | Applications

E | Precision oncology |
:

~ portbNN Libraries & !
Tools g

o SvaRoOT

SYCL Compilers & SYCL Runtimes Platform

RISC-V
RVV accelerator

Figure 1: SYCLOPS architecture

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack
and provides heterogeneous hardware with a wide range of accelerators from several vendors.

Platform layer: The second layer from the bottom, the platform layer, provides the software
required to compile, execute, and interpret SYCL applications over processors in the
infrastructure layer. SYCLOPS will contain oneAPlI DPC++ compiler from CPLAY, and
AdaptiveCpp from UHEI, and the Cling interpreter from CERN.

Application libraries and tools layer: While the platform layer described above enables
direct programming in SYCL, the libraries layer enables API-based programming by providing
pre-designed, tuned libraries for various deep learning methods for the PointNet autonomous
systems use case (SYCL-DNN), mathematical operators for scalable HEP analysis (SYCL-
ROOT), and data parallel algorithms for scalable genomic analysis (SYCL-GAL).

This deliverable presents the work carried out in in the context of “Task 2.3: Use cases &
SYCLOPS validation” of the SYCLOPS project. This task focuses on end-to-end validation of
the SYCLOPS stack using the three use cases. In this task, the use case partners performed
full integration of the libraries developed in WP5 into their respective pipelines. All partners
then collaborated on executing these pipelines, using runtime tools developed in WP4, on
SYCLOPS hardware developed in WP3, with the goal of using the full end-to-end evaluation
methodology developed in task 2.2 to compare at a global level (i) the benefit of hardware
acceleration in various use cases compared to their non-accelerated solutions, (ii) the
difference in performance/energy efficiency various accelerators in SYCLOPS, (iii) the efficacy
of open, standards-based SYCLOPS stack compared to other proprietary solutions.

This deliverable is structured as follows. Sections 2, 3, and 4 provide an overview of integration
work with respect to each of the three use cases in SYCLOPS, and spans the top three layers
of the SYCLOPS stack shown in Figure 1. Section 5 details the integration effort at the
hardware level in the Infrastructure layer of SYCLOPS stack.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 7 of 44

%) SYCLOPS

2 Particle Acceleration Use Case

2.1 State-of-the-art Before SYCLOPS

High Energy Physics (HEP) research is characterised by the need for processing and
analysing huge amounts of particle collision data coming from the accelerators. ROOT is a
popular tool for storing, analysing and visualising physics data regarding particle collisions.
These collision events are expressed as operations on particles, represented as 4-dimensional
time-space vectors, also known as Lorentz Vectors. Within ROOT, the GenVector package
contains classes for specialised vectors in 2, 3 and 4 dimensions, and their operations,
providing models and capabilities tailored to HEP analysis. The largest source of such data is
the Large Hadron Collider (LHC), hosted at CERN in Switzerland, which since its start has
collected more than 2 EB of data generated from physics events that need to be stored and
accessed by the physics community to be analysed. The need for compute power and data
storage is expected to increase dramatically in the next years, as in 2030 the High Luminosity
LHC (HL-LHC), an upgraded hardware configuration of the LHC particle accelerator, will start
operating with a demand of computational resources that is estimated more than 10 times with
respect to the current use. In this scenario, in which scientists need to run their analysis on
computing facilities exhibiting different hardware configurations and composition, performance
portability plays a crucial role. Such considerations motivate the need for developing
performance portable software tailored to the HEP use case. In particular, the KPIs addressed
in this use case are the following:

o KPI 6: A new interpreted SYCL execution environment will enable Jupyter-Notebook-
based, hardware-accelerated, ad-hoc data analytics that is at least 2x faster than the
CPU-based execution environment.

o KPI 8: A new hardware-accelerated library of linear algebra operators will enable HEP
acceleration.

o KPI 10: Three applications domains will successfully demonstrate that their end-to-end
pipelines that integrate SYCL libraries can be portably deployed, with no code change
in application logic, on several accelerators.

o KPI 11: Detailed evaluation will demonstrate that (i) Use cases can portably run their
SYCL-based accelerated pipelines on multiple processors and achieve at least 2x
improvement in latency and/or throughput and/or energy efficiency (depending on the
accelerator used) compared to non-accelerated versions, (i) SYCL-based libraries can
achieve performance comparable to their CUDA counterparts when appropriate.

o KPI 14: Establish close ties with research, academic, industrial partners, and
conferences with tutorials, submitted papers/presentations.

2.2 Cling Integration

Cling, the interactive C++ interpreter that sits at the centre of ROOT, is essential for exploratory
data analysis in High Energy Physics. Before the SYCLOPS project, Cling was tied to an older
LLVM toolchain and did not have proper support for modern heterogeneous programming
models such as SYCL. CUDA was supported, but only in a limited and not very flexible way.
As a result, users were mostly restricted to CPU workflows, and there was no straightforward
way to experiment interactively with SYCL or accelerator oriented C++ inside ROOT or inside
Jupyter.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 8 of 44

%) SYCLOPS

During SYCLOPS, a large part of the work focused on modernising this foundation so that
ROOT could eventually support interactive heterogeneous computing. The first major task was
to upgrade the LLVM backend in Cling, first to LLVM 18 and later to LLVM 20. This was a
difficult change because ROOT relies on a very large test suite, with more than three thousand
tests accumulated over many years. These tests caught subtle regressions and long standing
assumptions about older LLVM behaviour. The upgrade required changes in the JIT engine,
in the incremental compilation logic, and in ROOT’s dictionary generation pipeline. Since all of
these depend closely on LLVM internals, some upstreaming effort was also needed. This work
was necessary in order to make ROOT compatible with newer C++ standards such as C++20
and also to prepare the ground for AdaptiveCpp, which requires a modern LLVM toolchain for
SYCL code.

Once this modernisation was in place, we introduced SYCL support directly in Cling as part of
the SYCLOPS effort, and this support has now been merged into ROOT starting with version
6.38, thus achieving KPI 6. The feature is available when ROOT is built with the -
Dexperimental_adaptivecpp flag. With this, users can write and run SYCL kernels
interactively inside ROOT, which also means inside Jupyter notebooks. We prepared simple
tutorials to help new users get started.

Functional testing and performance checks were carried out for both CPU (OpenMP) and GPU
(CUDA) backends through the interpreter. The behaviour was consistent across both targets.
We also validated the portability of the approach by building and running SYCL-Cling on RISC-
V systems. This confirmed that the new infrastructure can serve as a general platform for
heterogeneous development.

This reduces the entry barrier for physicists who want to try GPU acceleration without leaving
the ROOT environment. The work also opens the door to teams at CERN and outside who are
actively investigating heterogeneous computing models and need an environment where they
can iterate quickly.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 9 of 44

https://root.cern/doc/master/group__tutorial__heterogeneous.html

%) SYCLOPS

" Jupyter ChangeCoordSYCL-multiple Last Checkpoint: & minutes ago
File Edit WView Run Kernel Settings Help Trusted

B+ X0 0 » & C »w Code . JupyterLab [7 ROOTC++ () =

.L ChangeCoordSYCL. cxx

void run(sycl::queue &queue)
const std::size t N = 1ULL << 26;
size t local_size = 128;

std::cout << "sycl::gqueue check - selected device:\n"
<< queue.get device().get_info<sycl::info::device::name>()
<< std::endl;

LvectorI *lvi = GenVectors(N);
LvectorD *lvo = ChangeCoord(lvi, queue, N, local size);

deletel] 1vi;
delete[] lvo;

static sycl::queue q{sycl::cpu_selector _v};
run(q);

sycl::queue check - selected device:
AdaptiveCpp OpenMP host device

sycl time @.233773 (s)

static sycl::queue q{sycl::gpu_selector_v};
run(q);

sycl::queue check - selected device:

NVIDIA GeForce RTX 3060 Ti
sycl time 0.567674 (s)

‘l [1: (ol

0+
0
-

Figure 2: An example from GenVectorX running in a Jupyter Notebook on multiple backends (OpenMP
and CUDA) without a change in application logic.

2.3 SYCL-ROQT Integration

Within the SYCLOPS project, we extended GenVector to GenVectorX, an accelerated library
that provides both a CUDA and a SYCL implementation of the Lorentz Vector classes that
facilitate computations with physical vectors. GenVectorX has been merged into ROOT
starting with version 6.38, thus achieving KPI 8. With reference to KPI 11, we analysed the
impact of manual code specialisation upon developers with regards to code maintenance, with
the explicit scope of minimising code duplication and maximising code reuse in order to
promote code sustainability and portability. We evaluated code divergence (a measure of
similarity between codebases ranging from 0 to 1) of GenvectorX versus GenVector for the
Invariant Masses test case, for both SYCL and CUDA backends. We highlighted that the SYCL
and CUDA variants share almost all the code with the CPU implementation, nonetheless the
CUDA implementation can only target NVIDIA GPUs. Also, we compared the performance of
some of the most common operations involving Lorentz Vectors on multiple platforms. We
carried out an extensive test campaign on NVIDIA GPUs, with particular focus on the
performance gap between native CUDA and SYCL code execution. Focusing again on the
Invariant Mass computation problem, we studied scaling and demonstrate that reach
performance portability, for almost all sizes of inputs. Moreover, two SYCL implementations -
OneAPI and AdaptiveCPP — have been taken into account, as well as two memory access
strategies, i.e. Device Pointers (PTR) and Buffers (BUF). We considered the following
computational environments:

1. NVIDIA L4 using CUDA 12.3 (CERN)
2. NVIDIA A100 40GB PCle using CUDA 12.2 (CERN)

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 10 of 44

%) SYCLOPS

3. AMD MI250X using ROCm 5.3.3 (LUMI supercomputer)
4. Risc-V platform Milk-V (EURECOM)

These results are detailed in “GenVectorX: A performance-portable SYCL library for Lorentz
Vectors operations”, M. Dessole, J. Chen, A. Naumann, to appear on Journal of Physics,
ACAT’ 24 Proceedings, 2024.

e «— oneAPI (BUF)
£ .| —— oneAPI (PTR)
s -— AdaptiveCPP (BUF
2 —— AdaptiveCPP (PTR
—— CUDA

-~— oneAPT (BUF)
—e— 0neAPI (PTR)
10 - AdaptiveCPP (BUF
—— AdaptiveCPP (PTR
—— CUDA

Number of Particies

Figure 3: Scaling evaluated on NVIDIA GPUs L4 (left) and A100 (right) for the invariant masses test case.
OneAPI and native CUDA implementations perform similarly, while AdaptiveCPP implementation is
slightly less performant.

-— oneAPI (BUF)

—«— oneAP| (PTR)
-— AdaptiveCPP (BUF
—— AdaptiveCPP (PTR|

=— AdaptiveCpp (BUF)
—=— AdaptiveCpp (PTR)
=— oneAPI (BUF)
o oneAPI (PTR)

107

Runtima (s)

Figure 4: Scaling evaluated on AMD GPU MI250X (left) and Risc-V platform Milk-V (right) for the invariant
masses test case. OneAP| and AdaptiveCPP implementations perform similarly on AMD GPU, while
AdaptiveCPP implementation is slightly less performant on Milk-V.

One of the main components of ROOT is RDataFrame, the high-level data analysis interface.
RDataFrame represents physics data in a columnar format, where a row defines a collision
event and the columns describe various characteristics for each event. A HEP analysis
generally consists of iterating over the data from different events to apply filters and evaluating
actions, like computing distributions (histogramming) and derive new columns (define).
RDataFrame interface is designed to have easy-to-enable parallelism and portability, without
requiring extensive knowledge of parallel computing and/or programming from its users.
Currently, RDataFrame contains support for implicit parallelism in multi-threaded and multi-
node distributed environments. Within SYCLOPS, we investigated the use of SYCL for
enabling heterogeneous computing within RDataFrame. thus achieving KPI 10. In the current
ROOT release (6.38), the actions are processed event-by-event, but recent developments
include bulk-by-bulk processing of events. This provides a natural unit of data to offload to
accelerators. The implicit parallelism mentioned previously is across bulks, but parallelism
within bulks has not been implemented yet. In this project, we based our work on RDataFrame
with the bulk API. Offloading the histogramming action alone has likely not enough
computational intensity to fully benefit from GPU usage, as shown in “Migrating CUDA to
SYCL: A HEP Case Study with ROOT RDataFrame”, J. Chen, M. Dessole, A.L. Varbanescu,
IWOCL '24: Proceedings of the 12th International Workshop on OpenCL and SYCL, 2024.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 11 of 44

%) SYCLOPS

Therefore, we prototyped a fused Define+Histogramming action. The GenVectorX library is
used to provide the computational kernel to evaluate the new column. Moreover, the
Define+Histogramming action can exploit CPU multithreading via RDataFrame engine for
operations such as 10.

ame m'l:

) EImpli:itHTinumThreadé];

55 = df.Define
Muonl pt", “"Muonl eta", "Muonl phi", "Muon

N {Events}", nbins, 0.25,);

Figure 6: Prototype RDF API: DiMuon analysis example.

2.4 Adaptyst and Energy Consumption Analysis
Integration

Adaptyst is an early-phase comprehensive performance analysis tool developed as the
response to the fragmentation of the performance analysis world and the increasing need for
going beyond purely algorithmic optimisations in computer systems. It is architecture-agnostic
and aims to address software, hardware, and system needs of users in a future-proof way.

The project is explained in more detail in deliverable D2.2. However, it should be noted that
since the submission of that deliverable, the new modular design of Adaptyst has been
released. This version of the tool features a possibility of adding support for novel system and
hardware components flawlessly via external modules. We provide two of these ourselves:

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 12 of 44

%) SYCLOPS

¢ linuxperf: encompassing the original functionality of Adaptyst, i.e. on-CPU and off-CPU
profiling with process/thread tracing, support for low-level “perf’ events (such as cache
misses and retired instructions), and CPU cache-aware roofline modelling through the
CARM Tool

e nvgpu: analysing performance of programs running on NVIDIA GPUs, currently by
tracing NVIDIA CUDA API calls

Adaptyst is gaining more and more attention in various areas of CERN: apart from SYCL-
ROOT and Cling with SYCL, there is an interest in using the tool in the Madgraph5 event
generator used alongside ROOT for Large Hadron Collider data analysis, data processing in
all four major LHC experiments, IT storage services etc.

In the context of the CERN use case in SYCLOPS, the tool has successfully profiled CPU-
wise the DiMuoninvMasses.cxx ROOT script run in a single execution with ROOT/Cling with
AdaptiveCpp (the Adaptyst system file used for this is in Figure 7). The dataset was pre-
calculated earlier using Filter() in the same script. Two program variants were analysed: one
without GenVectorX (arguments to DiMuoninvMasses(): 5, 20, false) and one with GenVectorX
(arguments to DiMuoninvMasses(): 5, 20, true). The arguments provided to the script were
crafted in a way to ensure repeated computations for reducing the impact of noise on measured
runtimes.

The runtime (excluding the profiling result post-processing stage) of the non-GenVectorX
version under Adaptyst was 813.388 s (vs 807.208 s with no profilers and no power/energy
measurements) and the same runtime of the GenVectorX version was 197.426 s (vs 192.113
s with no profilers and no power/energy measurements). In percentage terms, the overall
runtime of GenVectorX is ~75.7% faster under Adaptyst and ~76.5% faster with no profilers.
The machine used was a bare-metal server with an Intel Xeon Silver 4216 CPU @ 2.10 GHz
and an NVIDIA Tesla T4 GPU.

The produced main thread flame graphs for both DiMuoninvMasses.cxx variants are shown in
Figures 8 and 9 (parts of the flame graphs are compressed automatically and shown in light
purple to save rendering resources and reduce graph sizes). The primary function is
DiMuonlnvMasses(). The highlighted regions show the computation (i.e. vector addition) parts
with their sampled runtimes indicated in Figure 10. It can be seen that the program is compute-
bound, but it also features 1/0O such as ReadVectors(). The computation itself was speeded up
by ~92% thanks to SYCL. These comparisons are approximate due to the sampling-based
nature of profiling.

entities:
abc:
options:
handle mode: local
processing threads: 16

nodes:
cpu:
modules:
- name: linuxperf
options:
freqg: 20

Figure 7: Adaptyst system file used for profiling. It indicates that there is a single entity (computer), where
the CPU-related activity should be analysed through the linuxperf module (with on-CPU sampling
frequency changed from the default value to 20 Hz). Mor

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 13 of 44

w SYCLOPS

InvariantMasses(int, ROOT:Math::LorentzVector <ROOT::Math::PtEtaPhiM4D <double> >* ROOT:Math::LorentzVector<RO... ~ void ReadVectors...
'ROOT:Math::LorentzVector<ROOT: :Math::PtEtaPhiM4D<double> > ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM... (anonymous ...
(co... ROOT:Math::LorentzVector <ROOT::Math::PtEtaPhiMAD<double> >& ROOT::Math::LorentzVector<ROOT: Math::.. ~ ROOT:De...
_——__I TBranchE...
ROOT:Math::PtEtaPhiM4D<d... ROOT:Math:... _cos ~ _sin _simh TBranch:...
'ROOT::Math::PtEtaP... log... ~ ROOT:Ma.. _expml _si. mBe
(compr... [atan2i ROOT:w... TBu...
_atan2.... .]

Figure 8: Non-GenVectorX main thread flame graph with the computation part highlighted in purple. Some
flame graph elements are compressed and shown in light purple. The more blue a block is, the more off-
CPU itis. The more red a block is, the more on-CPU it is

=)
=]

—_
E

Figure 9: GenVectorX main thread flame graph with the computation part highlighted in purple. Some
flame graph elements are compressed and shown in light purple. The more blue a block is, the more off-
CPU itis. The more red a block is, the more on-CPU it is.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 14 of 44

%) SYCLOPS

Non-GenVectorX

GenVectorX

668.350 s (84.49% of DiMuoninvMasses())

53.780 s (30.71% of DiMuoninvMasses())

Figure 10: Approximate computation times of the non-GenVectorX and GenVectorX versions.

Alongside profiling with Adaptyst, energy consumption measurements were made when
running the non-GenVectorX and GenVectorX versions without Adaptyst on the same bare-
metal machine. This was done by attaching “perf stat” with the power/energy-pkg/ counter to
the script for the non-GenVectorX and GenVectorX CPU consumption and instructing nvidia-
smi to sample the GPU power consumption every 500 ms in the background slightly before,
during, and slightly after the GenVectorX script execution.

For the non-GenVectorX version, the CPU and thus total energy consumption was 61510.18
J. For the GenVectorX version, the total energy consumption was 16049.305 J, where the CPU
consumption was 14457.38 J and the GPU consumption was approximately 1591.925 J,
calculated from the graph shown in Figure 11. The GenVectorX energy consumption was
~73.9% lower than the non-GenVectorX one.

50

40

30

20

10

Power draw above baseline (W)

0 20 0 60 80 100 120 140 160 180

-10

Time in seconds

Figure 11: GPU power consumption above the baseline during the execution of the GenVectorX version of
the script. The baseline is the average consumption from 5 samples before and 5 samples after the
program execution.

Adaptyst has also been tested on the RISC-V-based machine with RVV 1.0 (DeepComputing
DC-ROMA Laptop Il with the SpacemiT X60 CPU): the “join” SYCLDB benchmark with
AdaptiveCpp and the OpenCL backend was profiled. The program used oneAPI Construction
Kit (OCK) as the OpenCL implementation. Two variants were analysed: one with OCK
compiled without RVV support and one with OCK compiled with RVV support. The code was
structured to run repeated computations, minimising the impact of noise on measured
runtimes.

With Adaptyst attached, the runtime of the non-RVV version was 1510.576 s while the
runtime of the RVV version was 1009.444 s, ~33.2% lower. The main thread flame graphs

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:

Use case integration, validation, and demonstration report Page 15 of 44

200

v SYCLOPS

generated by Adaptyst are shown in Figures 12 and 13 (light purple elements are
compressed). The primary function is main(). The highlighted regions show the “wait for
SYCL computation to be finished” part with their sampled runtimes indicated in Figure 14.
Their time length was reduced by ~38.2% thanks to RVV. As before, the approximation is
due to the sampling-based nature of profiling.

Figure 12: Non-RVV SYCLDB main thread flame graph with the “wait for SYCL computation to be
finished” part highlighted in purple. Some flame graph elements are compressed and shown in light
purple. The more blue a block is, the more off-CPU it is. The more red a

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 16 of 44

v SYCLOPS

Figure 13: RVV SYCLDB main thread flame graph with the “wait for SYCL computation to be finished”
part highlighted in purple. Some flame graph elements are compressed and shown in light purple. The
more blue a block is, the more off-CPU it is. The more red a bloc

Non-RVV RvV

1321.684 s (91.48% of main()) 817.316 s (86.81% of main())

Figure 14: Approximate “wait for SYCL computation to be finished” times of the non-RVV and RVV
SYCLDB versions.

The versions of the software used are as follows:

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 17 of 44

%) SYCLOPS

e Adaptyst on x86-64: dev branch, commit
51d6ff131e040ed56954752f3a2dd9c2b0c75058

e Adaptyst on RISC-V: dev branch, commit
2a3d413c¢3639db6e52853ab9b92f743336fae92e

e ROOT: v6.38.00-rcl

o AdaptiveCpp on x86-64: integrated with ROOT v6.38.00-rcl
e AdaptiveCpp on RISC-V: v25.10.0

e 0neAPI Construction Kit: v5.0.0

o perf for energy consumption analysis: 6.17

e nvidia-smi: 580.95.05

e CUDA:13.0

2.5 State-of-the-art After SYCLOPS

The test case taken into account carries out a DiMuon analysis, where the original code is
available at https://root.cern/doc/v636/df102 NanoAODDimuonAnalysis_8C.html. In this
simple, but representative example, the user calculates the invariant mass of all events with
exactly 2 muons with opposite charge. As the filtering of particles has not been tackled in this
project, it is not taken into account in final measurements. All events are packed in bulks to
be transferred to the device for processing: 8 doubles (two 4-dimensional particles) are
transferred, then invariant mass is computed to fill a bin in one histogram. Last, the result is
moved back to the host. Figure below shows the speedup of the multithreaded CPU
execution together with a SYCL offloading of the Define+Histogramming action versus the
multithreaded CPU only execution. On the x-axis, the 2-logarithm of the bulk size is shown,
which corresponds to the kernel size. Here, AdaptiveCpp has been used as SYCL
implementation and device pointers have been used for data transfers. The computational
environment is equipped as follows: AMD Ryzen 7 5700G 16 cores CPU, NVIDIA GeForce
GTX3060 GPU. We observe that 8 and 16-threaded execution can benefit of a speedup up
to ~3.5x, thus achieving KPI 11.

Speedup

—+— 1 threads

354 2 threads
4 threads

8 threads
3.0 1 —— 16 threads
2.5 /

1.5

1.0 *_f__r__,._,—«—-—f—"ﬁ

0.5 a—

T T T T T T
11 12 13 14 15 16
log2 bulksize

Figure 15: Speedup of the multithreaded CPU execution together with a SYCL offloading of the
Definet+Histogramming action versus the multithreaded CPU only execution. Different thread numbers are
shown in different colors.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 18 of 44

https://root.cern/doc/v636/df102__NanoAODDimuonAnalysis_8C.html

%) SYCLOPS

3 Genomics Use Case

This section details the integration carried out by our parther ACCELOM, which is an SME
specializing in Al-based genomic data analysis. The primary objective of this use case was to
accelerate the "Gold Standard" GATK germline variant calling pipeline using open hardware
acceleration. Through the development and integration of the SYCL-GAL library, SYCLOPS
has successfully demonstrated a ~4.6x reduction in total execution time compared to the
standard non-accelerated GATK pipeline for the genomics use case. Specifically, the
integration achieved an 11x improvement in preprocessing time and a 1.5x improvement in
variant calling time, exceeding key project KPIs regarding latency and throughput. In the rest
of this section, we will provide an overview of state-of-the-art pipelines used by ACCELOM
before SYCLOPS.

3.1 State-of-the-art Before SYCLOPS

ACCELOM is an SME specializing in Al-based genomic data analysis, offering bespoke
software and statistical expertise for identifying complex interactions in large-scale genomic
datasets. In SYCLOPS, ACCELOM is focusing specifically on germline variant calling which is
critical for many clinical use cases, such as Rare Disease Diagnosis (identifying de novo or
recessive variants in family trios) and Childhood Cancer screening (analyzing inheritance
patterns of cancer-associated variants). The figure below shows an example pipeline, similar
to what has been used by ACCELOM before for performing germline variant calling, in a
hypothetical paediatric cancer diagnostic setting where 2 parents and a child get their DNA
sequenced with the goal of getting information about cancer-associated germline variants, their
inheritance patterns, and the role of multigenic interactions in tumorigenesis. Three samples,
two from the parents and one from the child, are sequenced to produce reads. These
sequencing reads are checked for quality by aligning them to a reference and verifying with
QC tools. If quality check fails, resequencing is performed. Once all three sequences pass
quality check, the core computational pipeline is kicked off, which is the trio variant calling
pipeline from GATK.

parent 1, parent 2, child with cancer « resequencing

A
v

germline trio variant pipeline

alignment (BWA-MEM)
quality control failed

\J
trio variant calling

GATK
\J
annotation and filtering
VEP: ClinVar || gnomAD | CADD| LOVD dbNSFP | ...
Y
categorization
CPSR: [lpath. | likely p. VUS likely b. [benign

\J \J
variants with clinical significance +| full variant lists

Figure 16: Germline variant calling pipeline example

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 19 of 44

%) SYCLOPS

GATK germline variant calling pipeline is the gold-standard for trio analysis. It takes as input
all three sequenced reads in FASTQ format and produces a set of variants in a VCF file.
Following this, the variants identified by GATK are annotated and filtered with tools like VEP.
VEP predicts the consequence of variants at the molecular level, reports known phenotype
associations, and offers predictions of deleteriousness using a variety of sources like ClinVar,
gnomAD, etcetera. VEP also includes filtering options to prioritize variants and rank them.
Following VEP, the annotated variants are then passed to the tool CPSR which performs
automated variant interpretation in known cancer predisposition genes and produces a report.
This report is then used by clinicians to make treatment decisions.

As shown above, the GATK germline variant calling pipeline is a key part of this analysis. The
figure below shows the two main stages of this pipeline, which are preprocessing and variant
discovery. The preprocessing stage consists of 3 main substages, which are Sorting, Marking
Duplicates, and Recalibrating Base Quality Scores (BQSR). In the variant discovery stage, the
most important component is the HaplotypeCaller tool.

Preprocessing Variant Discovery

[1] | (it e []

Raw Mapped Reads : Call Variants Per-Sample
E HaplotypeCaller in GVCF mode
1 H

[Mark Duplicates J :
. P | (R Csves Jincess)
Recalibrate Base :oL
Quality Scores :
: 4 y
H Consolidate GVCFs
{ Analysis-Ready Reads 5

Joint-Call Cohort

{ Raw SNPs + Indels [T

—

Figure 17: GATK pipeline stages

The central problem, and the core of the work in SYCLOPS, as relevant to ACCELOM'’s use
case, is the fact that it is well known that this GATK germline variant calling pipeline is
extremely computationally intensive. A recent report by Intel showed that running this pipeline
on a 36-core Intel CPU to process just one whole-genome sequencing sample (which was
around 130GB in size) took nearly 4 days, with the preprocessing stage take 3 days and
HaplotypeCaller taking 20 hours. The analysis we did in SYCLOPS at the beginning of the
project showed similar results.

Goal: The goal of SYCLOPS was to accelerate the pre-processing and variant calling stages
to overcome this computational bottleneck.

Outcome: To achieve this, ACCELOM collaborated with EURECOM on preprocessing, and
INESC on variant calling. The outcome of this work was SYCL-GAL, a library of primitives for
accelerating various substages of the GATK germline variant calling pipeline.

KPIs: The KPIs addressed in this use case are the following:

o KPI 9: A new library of parallel algorithms (SYCL-GAL) will enable genomic data
analysis acceleration.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 20 of 44

%) SYCLOPS

e KPI 10: Three applications domains will successfully demonstrate that their end-to-end
pipelines that integrate SYCL libraries can be portably deployed, with no code change
in application logic, on several accelerators.

e KPI 11: Detailed evaluation will demonstrate that (i) Use cases can portably run their
SYCL-based accelerated pipelines on multiple processors and achieve at least 2x
improvement in latency and/or throughput and/or energy efficiency (depending on the
accelerator used) compared to non-accelerated versions, (ii) SYCL-based libraries can
achieve performance comparable to their CUDA counterparts when appropriate.

In the rest of this section, we provide a brief overview of what was achieved individually with
respect to accelerating preprocessing (Section 3.2) and variant calling (Section 3.3). Then,
we describe how we integrated SYCL-GAL in the context of a modified GATK pipeline used
by ACCELOM (Section 3.4), and did an end-to-end performance and accuracy testing
(Section 3.5).

3.2 Pre-processing Acceleration

In this section, we provide an overview of the work done in accelerating the preprocessing
stage of the GATK germline variant calling pipeline.

As mentioned earlier, this stage contains three sub operations, namely, Sorting, Marking
Duplicates, and BQSR. Our first insight was the fact that Sorting and Mark Duplicate stages
share several algorithmic similarities with database queries. For instance, relational databases
perform fast sorting of structured data, and SQL constructs like GROUP BY and UNIQUE are
used to perform aggregation and eliminate duplicates. Over the past few years, GPU
acceleration has become extremely interesting both academically and industrially for relational
databases. Several commercial GPU databases exist today that provide orders of magnitude
better performance for analytical SQL queries compared to their CPU counterparts. Motivated
by this, we asked the question as to whether portable acceleration of SQL database workloads
can be achieved using SYCL and RISC-V?

To answer this question, we developed SYCLDB, a library of relational primitives (like sort and
join) that can be used to build database engines on open hardware. SYCLDB was proven to
work across Intel, AMD, and NVIDIA GPUs, as well as RISC-V CPUs, matching the
performance of the CUDA-based counterparts while remaining vendor-neutral. SYCLDB was
also used throughout SYCLOPS as a vehicle to demonstrate integration at various levels. For
instance, SYCLDB relied on functionality (like kernel fusion) provided by SYCL compilers
DPCPP and ACPP developed in SYCLOPS. Similarly, SYCLDB was run on RISC-V CPUs and
GPUs deployed in SYCLOPS EMDC and showed that RISC-V vector extensions can be
successfully exploited by SYCL compilers. A peer-reviewed publication about SYCLDB
appeared in HeteroPar 2024.

Having built SYCLDB, we directly used the insights from optimizing SYCLDB, to accelerate
sorting and mark duplicate stages in SYCL-GAL. In particular, unlike GATK, which reads and
writes data to disk at every stage (creating massive 1/0O overhead), SYCL-GAL maintains data
in-memory using a columnar layout similar to SYCLDB. This structure improves GPU cache
utilization and allows for efficient vectorization. The sorting stage of the GATK pipeline was
optimized using a two-stage sorting algorithm based on a columnar layout. This allows for rapid
ordering of reads by genomic coordinates, a prerequisite for duplicate marking. Standard
algorithms for Mark Duplicates step often use hash maps, which are inefficient on GPUs due
to collisions. We observed this during the design of SQL JOIN operations in SYDLDB. Thus,
SYCL-GAL replaces this with a Merge Sort + Duplicate Marking approach (conceptually similar
to SORT UNIQUE in databases). This scans sorted reads to identify duplicates without the
overhead of hash table management.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 21 of 44

%) SYCLOPS

With sorting and mark duplicates optimized, the final step left was BQSR. The BQSR stage
builds a statistical error model to correct systematic errors from the sequencing machine. It
does in two phases. In the first phase, BQSR computes auxiliary arrays (covariates like
nucleotide context and cycle position). In the second phase, BQSR perform model
construction, where it updates a global recalibration table. We developed a fully GPU-based
version of BQSR in SYCL-GAL which performs both these phases entirely in GPU memory.
More information about our implementation is available in deliverable D5.4. But with this, we
have fully implemented an accelerated version of the preprocessing stage of the GATK
germline variant calling pipeline in SYCL. Deliverable D5.4 also contains an isolated evaluation
of this accelerated preprocessing stage and showed that SYCL-GAL preprocessing pipeline
can achieve a 10x improvement over the GATK baseline.

3.3 Variant calling acceleration

As mentioned earlier, the core component of the variant calling stage of the GATK pipeline.
Preliminary analysis in the project of HaplotypeCaller revealed that the Pair Hidden Markov
Model (pairHMM) algorithm is the main component of variant calling, responsible for
calculating the probability that a specific DNA read was generated by a candidate haplotype.
In the standard GATK pipeline, this single operation for over 70% of the total execution time,
making it the primary target for acceleration. However, accelerating pairHMM is notoriously
difficult because it relies on dynamic programming with data dependencies that typically
force sequential processing, and its computational complexity scales quadratically with
sequence length-

To overcome these limitations, INESC developed a novel parallelization strategy named
"Endeavor." Unlike previous GPU implementations that rely on processing anti-diagonals
(which leads to irregular workloads), Endeavor mathematically redefines the pairHMM steps
to expose row-level parallelism. This allows the algorithm to map efficiently to the GPU's
hardware structure. Specifically, the implementation processes read-haplotype pairs at the
warp level rather than the thread level. Threads within a warp calculate elements of a matrix
row in parallel, storing necessary intermediate values in shared memory to synchronize
across the warp.

This architectural shift allows endeavor to handle a vast range of sequence lengths
dynamically:

e Short Sequences (<1024 bases): Processed by a single warp using thread registers.
e Medium Sequences: Processed by multiple warps leveraging shared memory.
e Long Sequences (>131,072 bases): Processed by multiple thread blocks

This flexibility effectively removes the memory bandwidth bottleneck that plagues existing
solutions. Roofline model analysis confirms that while the state-of-the-art gpuPairHMM is
memory-bound, the Endeavor implementation is compute-bound, meaning it fully utilizes the
raw processing power of the accelerator.

More information about Endeavor is available in deliverable D5.4 which also contains an
isolated evaluation of pairHMM that showed that Endeavor can achieve two orders of
magnitude speedup over a CPU-based AVX512 implementation.

3.4 Integration and State-of-the-art After SYCLOPS

To recap, SYCL-GAL library contains individual acceleration of various steps in the
preprocessing stage, and an accelerated pairHMM implementation for the variant calling
stage.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 22 of 44

%) SYCLOPS

For ACCELOM's specific use case, the SYCL-GAL components were integrated into a
cohesive, accelerated pipeline as follows

3.4.1 Pipeline Integration

1. Preprocessing Integration: The standard GATK sorting and BQSR tools were directly
replaced with the SYCL-GAL library which supports accelerated sorting, mark
duplicates, and BQSR steps.

2. C++ HaplotypeCaller Development: The standard HaplotypeCaller is written in Java.
This made direct integration of the GPU code written in SYCL extremely tedious.
Preliminary effort at integration with GATK HaplotypeCaller showed that the overhead
of integration effectively negated the performance optimizations achieved by SYCL
pairHMM. So, we developed a new C++ HaplotypeCaller as a prototype. It should be
noted that reimplementing the HaplotypeCaller is a major endeavor that was not an
original part of the SYCLOPS project planning. Yet, we undertook this initiative as a
good-will effort, and as an activity that we plan to continue well beyond the end of the
SYCLOPS project, primarily to demonstrate the potential of pairHMM in an integrated
pipeline. We have integrated the SYCL pairHMM with the prototype C++
HaplotypeCaller, thus making an accelerated variant calling stage.

3. Deployment: The accelerated pipeline was extended by adding BWA-MEM2 sequence
aligner and deployed on the SYCLOPS EMDC, demonstrating successful portable
deployment, thus achieving KPI 9 and KPI 10.

3.4.2 Pipeline Evaluation

The integrated SYCL-GAL pipeline was rigorously evaluated to validate its performance and
accuracy against the industry-standard GATK baseline. The benchmarking utilized the publicly
available CEPH Utah Trio dataset, which contains sequencing data obtained from a Utah-
resident family of Northern and Western European ancestry, as a part of the Genome In a
Bottle datasets. The input consists of approximately 50GB of raw sequencing data. We focused
on one sample (NA12878) to study performance and accuracy of three different pipelines:

1. State-of-the-art before SYCLOPS: GATK germline variant calling (GATK post
processing + HaplotypeCaller variant calling)

2. Developed in SYCLOPS: SYCL-GAL-accelerated preprocessing + variant calling
pipeline

3. Commercial alternative and CUDA solution: NVIDIA Parabricks preprocessing +
Parabricks HaplotypeCaller

The figures below shows the comparison of SYCL-GAL and GATK on our SYCLOPS EMDC
server that is equipped with a Intel Xeon CPU and an NVIDIA L40S GPU. GATK is single
threaded and runs on 1 CPU while accelerated SYCL-GAL uses the GPU. Clearly, we can see
a dramatic reduction in processing latency as the total execution time for the pipeline was
reduced from 113.62 minutes using the standard GATK workflow to just 24.58 minutes with
the SYCL-GAL integration, representing a total speedup of approximately 4.6x. These results
show that we exceeded the planned KPI11 target of 2x improvement. This improvement was
most pronounced in the preprocessing stages, where the time required dropped from 89.00
minutes to 8.26 minutes—an 11x improvement that effectively eliminated the preprocessing
bottleneck. Variant calling also saw significant gains, with execution time falling from 27.32
minutes to 18.00 minutes, achieving a 1.5x speedup despite the complexity of the
HaplotypeCaller integration-

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 23 of 44

&) SYCLOPS

__120 113.62 140
é 100 120
27.32
— 80 100
£ 80
£ 60
t; 60
g 40 24.58 w0
Z » - 20 18.00
E 0 0 I 826 |
GATK SYCL-GAL GATK SYCL-GAL

H preprocessing variant calling
Figure 18: Performance of GATK vs SYCL-GAL

To gauge the maturity of the solution, the SYCL-GAL pipeline was also compared against
NVIDIA Parabricks, a highly optimized, proprietary, and closed-source solution. Figure below
shows the results from this comparison.

30

24.58 30

)
[4;}

25

~
o

20
18.00

iy
[4;}

Total Exec time (mins)
=
s o

[$;]

3.70 5 -
] 0 ki

SYCL-GAL Parabricks
SYCL-GAL Parabricks ® preprocessing variant calling

o

Figure 19: Performance of SYCL-GAL vs Parabricks

While Parabricks achieved a faster total execution time of 3.70 minutes, the evaluation
revealed that this gap is largely driven by Input/Output (I/O) architecture rather than raw
computational deficiency. The current SYCL-GAL implementation reads and writes large BAM
files to disk between stages, incurring significant I/O penalties, whereas Parabricks pipes data
directly between stages in memory. When isolating the computational kernels (Mark Duplicates
and BQSR), SYCL-GAL was found to be highly competitive, running only 1.7x slower than the
mature Parabricks solution. This indicates that the open-standard SYCL algorithms are
approaching the efficiency of vendor-locked alternatives.

Finally, we also evaluated the accuracy of the accelerated pipeline by comparing the output
Variant Call Format (VCF) files generated by the SYCL-GAL pipeline with those from the GATK
baseline. We found that 98.2% of variant calls matched. We further analyzed the discrepancies
and found that accelerated components in SYCL-GAL had no issues. Rather, the
discrepancies that were observed were attributed to edge cases within the newly developed
C++ HaplotypeCaller prototype. Thus, further work is required on the new HaplotypeCaller to
iron out these differences.

Overall, the evaluation confirms that ACCELOM successfully integrated a portable, open-
standard acceleration library that delivers massive speedups over CPU baselines and offers a
viable, vendor-neutral alternative to proprietary genomic analysis stacks. In doing so, we have
achieved KPI 9 by developing SYCL-GAL, KPI 10 by integrating it in a use case pipeline, and
exceeded KPI11 by demonstrating a 4.6x speedup.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 24 of 44

&) SYCLOPS

4 Autonomous Systems Use Case

4.1 State-of-the-art Before SYCLOPS

The autonomous systems use case within the SYCLOPS project centers on PointNet, a deep
learning architecture designed to process 3D point cloud data efficiently. Figure below shows
an example of point clouds, which are unordered sets of points.

Point Cloud

Figure 20: Point cloud example

PointNet! is a foundational neutral network architecture that demonstrated feature learning on
point clouds. Unlike traditional methods that convert data into structured formats like voxel
grids or images, PointNet processes point clouds directly. This capability is critical because
point clouds are unordered sets of data where the permutation of points does not alter the
spatial information they represent. To handle this "permutation invariance," PointNet utilizes a
symmetric function, specifically max pooling, to aggregate features after applying
transformations to individual points. This architecture has become foundational for 3D
perception tasks such as object detection and semantic segmentation in autonomous driving
scenarios.

l PointNet
j mug? @ N A
Ly table? i
car?
Classification Part Segmentation ~ Semantic Segmentation

Figure 21: Pointnet example

Prior to the SYCLOPS project, the landscape of Deep Neural Network (DNN) acceleration
libraries presented a stark trade-off between portability and performance. portDNN? (formerly
known as SYCL-DNN) existed as an open-source library that offered portability across different
hardware architectures—including CPUs, GPUs, and FPGAs—through the use of generic
SYCL kernels. However, its utility was limited because it only supported a small set of common
operators and lacked key primitives required for PointNet, such as 1D convolutions, batch
normalization, and concatenation. Conversely, oneDNN?® (oneAPI Deep Neural Network
Library) provided a unified interface for DNN operations with the goal of enabling developers

1 https://arxiv.org/abs/1612.00593v2
2 hitps://github.com/codeplaysoftware/portDNN
3 https://github.com/uxifoundation/oneDNN

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 25 of 44

https://arxiv.org/abs/1612.00593v2
https://github.com/codeplaysoftware/portDNN
https://github.com/uxlfoundation/oneDNN

%) SYCLOPS

to write code once and deploy it anywhere. While robust, oneDNN achieved high performance
primarily through vendor-specific backends, meaning it lacked a truly portable generic path
that could easily support new or non-traditional hardware architectures without specific vendor
libraries.

Goal: The goal of SYCLOPS was to bridge the gap between the two libraries and enable
SYCL-based, accelerated point cloud analysis.

Outcome: To achieve this, CPLAY worked on extending and combining the functionalities of
the two disparate SYCL DNN libraries to produce a single, state-of-the-art PointNet
implementation in SYCL.

KPIs: The KPIs addressed in this use case are the following:

e KPI 7: Significantly enhanced SYCL-DNN will enable scalable object detection for
autonomous systems.

o KPI 10: Three applications domains will successfully demonstrate that their end-to-end
pipelines that integrate SYCL libraries can be portably deployed, with no code change
in application logic, on several accelerators.

o KPI 11: Detailed evaluation will demonstrate that (i) Use cases can portably run their
SYCL-based accelerated pipelines on multiple processors and achieve at least 2x
improvement in latency and/or throughput and/or energy efficiency (depending on the
accelerator used) compared to non-accelerated versions, (i) SYCL-based libraries can
achieve performance comparable to their CUDA counterparts when appropriate.

4.2 SYCLomatic and SYCLcompat

To bridge the gap between existing high-performance CUDA implementations and the open
SYCL standard, the project employed a robust toolchain consisting of SYCLomatic and
SYCLcompat. SYCLomatic is an open-source command-line tool designed to automate the
migration of CUDA code to SYCL, typically achieving an automatic translation rate of
approximately 95%. It handles the conversion of kernels, data types, and API calls, while
identifying complex sections that require manual intervention. Complementing this,
SYCLcompat serves as a compatibility library that provides SYCL-implemented functions to
mimic specific CUDA behaviours that lack a direct one-to-one mapping in the SYCL standard.

This toolchain played a pivotal role in enabling the PointNet architecture within the portable
library ecosystem. The project utilized these tools to assist in the development of missing
operations in portDNN that were essential for PointNet. Specifically, the tools facilitated the
porting and implementation of complex primitives such as concatenation, broadcasted binary
operations, and 1D convolutions. By automating the translation of standard constructs and
providing compatibility layers for vendor-specific APIs, the project successfully extended
portDNN's operator support to fully encompass the requirements of the PointNet model. More
details about SYCLomatic and SYCLcompat are available in deliverable D5.1.

4.3 Merging portDNN and oneDNN

A defining achievement of the SYCLOPS project was the unification of the portability found in
portDNN with the extensive ecosystem of oneDNN. The strategy involved introducing a generic
SYCL GPU backend into oneDNN, which was achieved by migrating the generic SYCL kernels
originally developed for portDNN directly into the oneDNN repository. This integration
effectively endowed oneDNN with a portable execution path that complements its existing
vendor-optimized backends.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 26 of 44

%) SYCLOPS

Consequently, the merged infrastructure allows the PointNet model to be executed through
oneDNN on diverse hardware accelerators without requiring any changes to the source code.
The implementation leverages oneDNN primitives to encapsulate operations like convolutions
and pooling, while engines and streams abstract the computational device and execution
context. This unification ensures that the optimizations and portability enhancements
developed within portDNN are now available within the widely adopted oneDNN ecosystem,
resolving the prior trade-off between performance and hardware flexibility.

4.4 State-of-the-art After SYCLOPS

Following the integration, the SYCLOPS project demonstrated that the new SYCL-based
implementations could achieve performance parity with native backends. Detailed
benchmarking results that demonstrate the performance and portability of our solution are
available in deliverable D5.4.

The project extended beyond standard benchmarking to a practical research use case
involving Unmanned Aerial Vehicles (UAVSs). Collaborating with the RAPID project, SYCLOPS
researchers applied the PointNet architecture to process aerial point clouds generated by 76-
81GHz W-band radar for Beyond Visual Line of Sight (BVLOS) operations. To address the
stringent Size, Weight, and Power (SWaP) constraints of UAVs, the team used portDNN to
refine core operations, most notably optimizing the model by transforming 1D convolutions into
Matrix Multiplications to reduce computation time. This optimized framework successfully
distinguished between multiple classes of aerial and ground objects, enhancing the situational
awareness of autonomous drones. Further details about this collaboration are available in a
peer-reviewed publication®.

To demonstrate integration with RISC-V hardware developed in SYCLOPS, we performed
rigorous testing of hand-crafted 1D convolution and matrix multiplication kernels written in
SYCL, two kernels that are heavily used in portDNN, on both the CSIP RVV soft core and the
SYCLARA platform. For this, we used the oneAPI Construction Kit developed in WP4 and
described in deliverable D4.2 to offload kernel execution to the RVV accelerators.

Platform | Operation | Size | Data Type | Scalar [ms] | VF=16 [ms] | Speedup
Codasip | Convolution | 8K Int32 5643 1665 3.389189
Codasip | Convolution | 8K | Float 3296 1230 2.679675
Codasip | Convolution | 8K Double 5594 1651 3.38825

ARA Convolution | 8K Int32 10404 2511 4.143369
ARA Convolution | 8K | Float 7178 2100 3.418095
ARA Convolution | 8K Double 47499 2524 18.81894

The table above shows the results for scalar convolution (before SYCLOPS) and RVV
convolution with CSIP or ARA (after SYCLOPS) for Int32, Float, and Double data types. As

Figure 22: RVV vs scalar performance

4

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report

Page 27 of 44

https://arxiv.org/abs/2311.03221

%) SYCLOPS

can be seen, we observe substantial performance gains when utilizing RISC-V vector
extensions on either hardware platform, with CSIP achieving up to 3.38x improvement and
ARA an 18.8x improvement. It can also be seen that CSIP RVV solution provides much better
performance than ARA in all cases.

The table below shows the results for matrix multiplication. Similar results can be seen here
as well, with RISC-V vector extensions providing up to 3.07x improvement with CSIP platform
and 5.9x with ARA.

Platform | Operation Size Data Scalar | RvV Speedup
Type [ms] [ms]
Codasip | Matrix (150,300) | Int32 11491 4397 2.613373
multiplication | X
(300,600)
Codasip | Matrix (150,300) | Float 15696 | 5098 3.078854
multiplication | X
(300,600)
Codasip | Matrix (150,300) | Double | 20565 8569 2.39993
multiplication | X
(300,600)
ARA Matrix (150,300) | Int32 25947 | 4586 5.657872
multiplication | X
(300,600)
ARA Matrix (150,300) | Float 26465.3 | 5307 4.986866
multiplication | X
(300,600)
ARA Matrix (150,300) | Double | 36571.3 | 6156.33 | 5.940439
multiplication | X
(300,600)

Figure 23: RVV vs scalar performance of matmul

These results confirm that the SYCL compiler toolchains and libraries developed in SYCLOPS
can effectively exploit RISC-V vector accelerators to enhance the performance of deep
learning primitives essential for autonomous systems. In doing so, we have achieved KPI 7 by
developing oneDNN library, KPI110 by using it to train a PointNet model with open weights, and
KPI11 by running the SYCL-based PointNet implementation on a variety of hardware
accelerators either end-to-end, or just key kernels (depending on the capability of the
underlying hardware), and demonstrating concrete performance improvements.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 28 of 44

%) SYCLOPS

5 Infrastructure & Platform Tools Integration

So far in this document, we presented the integration and validation work done on a per use
case basis. In this section, we specifically focus on integration at the infrastructure layer of the
SYCLOPS stack that involves the RVV accelerator from CSIP and the EMDC from HIRO.

In deliverable “D3.2: EMDC v2.0 with RVV accelerator release”, we provided a detailed
evaluation of the two RVV accelerator platforms developed in SYCLOPS: (i) the FPGA platform
from CSIP, and (ii) SYCLARA platform developed by EUR. Similarly, In deliverable D3.2, HIRO
described their effort in developing a CXL-enabled, PCle 6.0 switch for their next-generation
EMDCs, and the CXL research testbed that has been put in place to test software developed
in SYCLOPS.

In this section, with respect to the CSIP RVV accelerator, we will focus on an analysis of energy
efficiency gains that can achieved by using RVV over scalar execution in Section 5.1. Following
this, we present the work done in integrating and using the CARM profiling tool to evaluate
specialized RISC-V accelerators in Section 5.2. Finally, we provide an update with respect to
the switch, and present results obtained by running SYCLDB on the CXL server in Section 5.3.

5.1 CSIP RVV Accelerator Integration
5.1.1 CSIP RVV Power estimation analysis

To estimate the energy requirements of the RVV accelerator prototype, we run reduced tasks
in the RTL simulation to generate switching activity file for every analysed benchmark. The
simulated RTL was synthesized by Cadence Genus tool, and this tool was also used to provide
power estimation for every benchmark. Each benchmark was evaluated in both scalar and
vector implementations. However, both variantsrunon the vector -enable core.
No comparison with scalar core is done as part of this report.

The A730 family implements a private L1 cache, while the L2 cache is shared between cores
in a multicore system. The focus of the SYCLOPS project was on the enhancing the RISC-V
core with the RVV support. The multicore systems are much
larger by definition which negatively affect the simulation and synthesis runtime. Therefore, we
implemented only single core solution for the SYCLOPS project. Since L1 cache is private, it
is considered part of the core for the purposes of this analysis. Level 2 cache is the resource
shared with other potential cores and therefore its power consumption is not addressed by the
analysis. During the simulation, we simulated the whole memory subsystem with the L2
cache to ensure that the behaviour of the core is the same as it would be in the real system.
However, we computed the power estimation only for L1 cache and the core.

While the RVV Accelerator targets 1.2GHz operation frequency, the experiments were done
on much more relaxed target of 600MHz due to the prototype constraints. TSMC
7nm FinFET technology was used as a synthesis target.

The following benchmarks were evaluated.
Vector Addition

Two predefined vectors of length 1024 and 4096 elements of 32-bit floating point datatype
were added element wise.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 29 of 44

%) SYCLOPS

Variant | Vector Clock Average power Consumed Energy
Length cycles [mW] [nJ]

SCALAR 1024 9126 68.1296 1036.25

VECTOR 1024 7168 68.1144 813.74

SCALAR 4096 26541 68.1366 3014.02

VECTOR 4096 18984 68.1150 2155.16

Figure 24: Power/energy consumption of RVV for vecadd

It can be seen from the table that vector implementation can bring significant energy savings
of 21% (1024) and 28% (4096), primarily due to the computation speed up of 21% and 28%,
respectively. However, the average power is slightly reduced in the vector implementation,
which can be attributed to simplified load/store operations.

Vector Multiplication

Two predefined vectors of the 32-bit floating point elements were multiplied elementwise.
The evaluated vector lengths were 1024 and 4096.

Variant | Vector Clock Average power Consumed Energy
Length cycles [mW] [nJ]

SCALAR 1024 9139 68.1307 1037.74

VECTOR 1024 7168 68.1154 813.75

SCALAR 4096 26530 68.1389 3012.88

VECTOR 4096 18984 68.1162 2155.2

Figure 25: Power/energy consumption of RVV for vecmul

The algorithm and implementation of the vector multiplication benchmark are very similar to
the vector addition benchmark. Only difference lies in the arithmetic operation applied to the
vector elements. Multiplication is slightly more complex than addition; however, as shown in
the tables, the actual performance difference is negligible.

Dot product
The dot product of two predefined vectors was computed. The implementation uses a floating-

point register as an accumulator, representing a family of algorithms that require data transfers
between scalar and vector parts of the system.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 30 of 44

%) SYCLOPS

Variant | Vector Clock Average power Consumed Energy
Length cycles [mW] [nJ]

SCALAR 1024 12745 68.1094 1446.76

VECTOR 1024 7820 68.1305 887.97

SCALAR 4096 39854 68.1089 4524.02

VECTOR 4096 19922 68.1415 2262.52

Figure 26: Power/energy consumption of RVV for dotproduct

The table shows that the vector implementation consumes slightly more power than the scalar
implementation in average, which differs from other vector benchmarks. This is due to the dot
product algorithm using a floating-point register as an accumulator. After each MACC
instruction, data must be transferred from and to the floating-point register,
introducing additional overhead.

Matrix multiplication

Two square matrices of 20 columns were multiplied together. Several implementations were
evaluated. The ANSI_C implementation refers to the classic approach using three nested
loops in C,.with only compiler optimizations applied. The BLASFEO implementations targets
the GENERIC configuration of the Blasfeo library. Both these implementations do not use
vector instructions. In addition, four other implementations were developed in vector
assembly., differing only in the LMUL size.

Variant Instruction Clock Average power Erc:grsumed
count cycles [mW] gy [nJ]
[ANSI_C 64261 76799 6.81110 8718.09
BLASFEO 29403 38587 68.1116 4380.37
LMUL1 27846 50033 68.1614 5683.87
LMUL2 20646 44920 68.1594 5102.87
LMUL4 17046 47218 68.1470 5362.94
LMUL8 13446 51610 68.1422 5861.36

Figure 27: Power/energy consumption of RVV for matmul

The matrix multiplication benchmark demonstrates the complexity of optimization. When
analysed by the instruction count, we can see the expected trend: the pure C implementation
takes the longest time, followed by the optimized but scalar library implementation, while
vectorized implementations are the fastest. The higher LMUL, the faster the code according to
the IA model.

However, when the clock cycles are considered, the situation changes. Increasing LMUL for
the vectorized implementation from LMUL1 to LMUL?Z2 introduces a speed up, but it is much
lower than predicted by the IA model. The IA model predicted a 35% speed up, but the RTL
simulation observed only 11%. This discrepancy occurs because the number of the
computation elements in the RVV accelerator is optimized for the vector width of 128bits. For

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 31 of 44

) SYCLOPS

larger LMUL, the core executes the same operation over multiple consequent cycles for
different segments of the enlarged register. Therefore, the observed speed up is primarily due
to the more efficient pipeline utilization and reduced loop management.

From the table, it is clear that increasing LMUL from 2 up does not significantly accelerate the
computation. This is due to the “small” size of the problem. Even though this is the longest-
running benchmark in the set, it still operates on only 20x20 matrices. For LMULZ2, the vector
register contains 8 elements, which means that the row or column of the matrix is processed
in three computation steps. For the LMUL4, the vector register stores 16 elements, but the
remaining 4 elements still force a second iteration of the loop. Moreover, each iteration with a
larger LMUL requires additional clock cycles to complete. We conclude, that to fully utilize large
LMUL values, much larger datasets are needed.

The fastest implementation turned out to be the BLASFEO. While this implementation does

not use vector instructions, it splits the input matrix into several smaller tiles to optimize the
memaory access alongside computation.

Energy Consumption: Scalar vs Vector

3020
3000 - Il Scalar

e Vector

2500 +

2000 -

1500 +

Energy (n])

1000

500 -

A0t
P‘;gdi\‘i\“’“ > Qe

© B © A
A0% o3 o207 @02
. c_aﬂo _ p\'\cﬂ“o @ me.u
Pl o

Figure 28: Energy Consumption: Scalar vs Vector (Shows energy savings for vector implementations across Addition,
Multiplication and Dot Product benchmarks for 1024 and 4096 elements)

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 32 of 44

v SYCLOPS

Energy Efficiency: Scalar vs Vector

Il Scalar

1.4
e Vector

1.2 A

o o =
o @ [=)
' 1 L

Energy per Operation (nj/op)

o
B
1

0.2 1

0.0 -
ot 02© ok 090 ot

a8k G (O * e

19

ot

Figure 29: Energy Efficiency: Scalar vs Vector

51000 Matrix Multiplication: LMUL Scaling vs Clock Cycles

51000 ~

50000 A

49000 A

48000 -

47000 A

Clock Cycles

46000 -

45000

44000 -

LMUL1 LMUL2 LMUL4 LMUL8
LMUL Configuration

Figure 30: LMUL Scaling vs Clock Cycles during Matrix Multiplication (Shows diminishing returns for LMUL > 2 on
small matrices, reinforcing need for larger datasets to exploit RVV fully)

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 33 of 44

%) SYCLOPS

5.2 CARM Tool—CSIP Integration

In our continued collaboration with Codasip, we have further developed our benchmarking
tools to evaluate not only a greater variety of RISC-V cores, but also specialized accelerators.
The support includes integer instructions (8, 16, 32 and 64-bit), custom fixed-point instructions
for the MAC and DSP accelerators (Q7, Q15 and Q31 formats), floating-point instructions (32
and 64-bit), and bit-manipulation instructions part of the RISC-V Zbb extension. Furthermore,
finer control over the benchmark instructions is now possible, mixing multiple arithmetic
instructions, or targeting alternative ratios between loads and stores. This suite of roofline
benchmarks was evaluated on the L31 and L110 cores, under a variety of microarchitectural
configurations.

Codasip’s L31 core provides several degrees of freedom regarding the configuration of the
microarchitecture. In particular, the L1 cache can be configured in its size and number of ways.
The change in size is reflected in the raw microbenchmark results as expected. As neither
parameter has an influence on the memory bandwidth itself, the roofline plot remains
unchanged. Given the single-issue nature of this embedded core, the theoretical peak floating-
point performance is 2 operations per cycle, which the result tends towards. Compared to the
floating-point benchmarks, the integer pipeline shows an identical memory bandwidth but a
lower peak performance, i.e., close to the theoretical maximum of 1 operation per cycle, and
the respective roofline can be observed in Figure 31.

0.5 1

Performance [GOps/s]

0.125 0.25 0.5 1
Arithmetic Intensity [Ops/Byte]

Figure 31: 32-bit integer CARM roofline of the L31 core

The L110 core can be equipped with a variety of Bounded Customisation accelerators, among
which is a DSP accelerator, capable of performing dot products on large fixed-point vectors.
The microbenchmarking required to evaluate the memory bandwidth of the accelerator differs
significantly from typical CARM microbenchmarks, requiring custom instructions and a different
code structure. As such, a specialised tool was developed to generate the microbenchmark
code for this accelerator, which would be challenging to accommodate within a more general-
purpose tool.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 34 of 44

%) SYCLOPS

— TCM 64x256 X 16x256
X 64x64 X 64x1024 ¥ 256x256

Performance [GOps/s]

2 4 8 16 32 64
Arithmetic Intensity [Ops/Byte]

Figure 32: CARM roofline of the L110’s DSP for the Q31 format and FIR filter performance (labelled as
number of taps x block size)

As a case study, a Finite Impulse Response (FIR) filter application was instrumented and
analysed using the CARM, accelerated using the L110 DSP. FIR filters have two key input
parameters, which are the number of taps and the block size. These typically have a strong
impact on the arithmetic intensity, with the number of taps also affecting the maximum size of
the dot product. As shown in Figure 32, all tested configurations are under the compute-bound
section of the roof, meaning the variation in performance is likely due to the variation in dot-
product size. A lower number of taps reduces the maximum dot-product size, decreasing the
number of operations per instruction, which lowers the hardware utilisation.

The Codasip Exploration Framework allows for the automated testing of software over a wide
variety of cores and their configurations. Using this platform, we have benchmarked all
compatible configurations, modelling them with the CARM. This allows for a fast performance
assessment, and the identification of key parameters with a strong influence on performance.
Figures 33 and 34 show part of the results of this exploration, covering multiple benchmark
types and microarchitectural configurations, respectively.

L31 f32 Id-add

L31 f32 st-mul

L31 f32 Id,st-fmadd
L31i32 Id,st-add
L3116 Id,st-add

)
5
o
o
)
o L110i32
5 L110 g31
£
£
[h)
o

T T

0.25 0.5 1 2 4
Arithmetic Intensity [Ops/Byte]

Figure 33: CARM rooflines of the L110 and L31 cores for a variety of precisions and instructions.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 35 of 44

%) SYCLOPS

1 === e E

/ ==+ 700 zephire
/ 1110 andromeda
A 700 ruby
i 700 sunstone
: 110 phoenix
- 1110 leo
110 lyra
- 1110 ara

Performance [GOps/s]
A

0.25 0.5 1 2
Arithmetic Intensity [Ops/Byte]

Figure 34: CARM rooflines for a variety of microarchitectural configurations of the L110 and the 700-
series cores, for a 32-bit integer benchmark (load/store, add/mul)

5.3 HIRO EMDC Integration
5.3.1 PCle Gen 6 Switch & CXL R&D for SYCLOPS

Edge-cloud Al workloads are becoming increasingly multi-agent, multi-model, and distributed
across diverse accelerators. As the density of models and data grows the overall performance,
scalability, and portability are no longer limited by compute throughput but by the movement
of Al (hardware agnosticism, interoperability) and Data movement (bandwidth, smarter
memory usage): shuttling model weights, KV-caches, embeddings, and intermediate tensors
between storage, host memory, and heterogeneous devices. This challenge is amplified at the
edge, where systems operate under strict latency, power, and DRAM constraints.

Three maturing technologies jointly address these bottleneck: (1) the SYCL programming
model and (2) PCle Gen 6 + CXL.

SYCL provides a unified, cross-architecture programming model that abstracts heterogeneous
hardware and allows LLM pipelines, tokenizers, attention kernels, KV-cache updates, agent
routing, and higher-level reasoning modules to execute across CPUs, GPUs, NPUs, and
FPGAs without rewriting kernels or managing device-specific memory semantics. Its unified
shared memory (USM), asynchronous execution, and emerging graph-execution extensions
enable fine-grained scheduling, overlapping compute with data movement, and dynamic load
balancing. SYCL becomes the software layer that can fully exploit the high-bandwidth,
coherent interconnects emerging in the edge-cloud.

PCle Gen 6 provides the next-generation physical layer needed for these workloads, delivering
64 GT/s PAM4 signalling (2x Genb5, 4x Gen4) and enabling low-latency, high-throughput paths
between accelerators, storage, and host memory. PCle Gen 6.0 is the first PCle generation
built for Al-native systems designed around the bottlenecks of distributed training, large-model
inference, checkpointing, and memory movement at scale. PCle not as a “peripheral
interconnect” but as the primary compute fabric binding GPUs, NPUs, SmartNICs, CXL
memory pools, and NVMe clusters into one coherent system.

CXL (Compute Express Link) solves the memory limitations of edge LLM systems by enabling
dynamic memory expansion, shared memory pools, and coherent access to KV-caches and
model state across heterogeneous devices.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 36 of 44

%) SYCLOPS

Together, PCle Gen6 + CXL 3.0 form a coherent, memory-centric fabric that enables
capabilities impossible under traditional PCle-only systems. The combination of SYCL + PCle
Gen6 + CXL is essential: Al applications become hardware-agnostic, can run on any mix of
accelerators, and can fully leverage high-speed DMA transfers, peer-to-peer communication,
shared context, pooled memory, and fast access to NVMe storage. PCle Gen 6 ensures that
SYCL’s runtime, unified memory abstractions, and graph execution do not become constrained
by legacy I/O limits unlocking heterogeneous, scalable, real-time LLM and multi-agent Al in
the edge cloud.

In the SYCLOPS project, HIRO followed multiple R&D activities on PCle gen6 and CXL:

1. Development of EMDC v1.0 of the RISC-V reference platform. (FPGA based) (1
reporting period)

2. Build an EMDC v2 testbed (not CXL capable) with multi-vendor accelerators to test
transferability of a SYCL based application across GPUs from different vendors; (1%
reporting period)

3. Develop and manufacture the PCle Gen6 switch (Broadcom Atlas3 Gen 6 RDK/HIB,
switch, and retimer) for EMDC. (2"¢ reporting period)

4. Set up a validation board testbed to validate the signal integrity of the design and when
endpoints become available benchmark (2" reporting period): (i) Maximum per-
device throughput, (ii) Ensuring clean 64 GT/s PCle Gen 6 signal integrity, (iii)
Validating NVMe SSD — Host — Accelerator data paths, (iv) Achieving stable Gen 6
PAM4 operation across real cables and boards.

5. Research CXL 2.0 Memory pooling (Host CPU (Intel Xeon) + local DDR5 + Micron CXL
memory module(s)) in EdgeMicroDataCenter testbeds, a CXL 2.0 capable testbed (2"
reporting period).

5.3.2 PCle Gen 6 Switch Development

Competitive forces and the potential of PCle Gen6 over PCle Gen5 made Broadcom decide
to speed up the market launch for Gen 6 switch Silicon. Synopsys published the most detailed
early PCle Gen 6 PHY results, demonstrating stable 64 GT/s signaling with PAM4 modulation
and Forward Error Correction (FEC). Their benchmarks include eye diagrams, bit-error rate
(BER) plots, and latency measurements across backplane and cable channels.

Key Data Points

. 64 GT/s PAM4 with <107'° BER after FEC
. Typical added latency: 20—30 ns per FEC decode stage
. Demonstrated channel loss tolerance up to 36 dB with adaptive DFE+CTLE

Broadcom is the only vendor showing system-level PCle Gen 6 demonstrations with real
components. (Teledyne LeCroy + Micron + Broadcom Gen 6 Demo (2025)). Because of the
market volume the Hyperscale adoption of PCle Gen6 has the priority of the OEM’s with the
Industrial/ Edge Al to follow in their footsteps.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 37 of 44

$) SYCLOPS

PCle 6.0 Adoption Trajectory by Market Segment (2023-2030)

Volume

Early Prod,

Adoption Stage

Sampling

/

Spec/IP

2023 2024 2025 2026 2027 2028 2029 2030
ear

Figure 35: PCle Gen 6 switch roll out and adoption in different domains.

HIRO decided to align with this market progress and aim for a Gen 6 switch development
instead of the projected Gen 5 Switch. Gen 6 not only has more capacity but also more features
which makes the development and utilisation of the Switch more complex.

Features | Gen | Gen? | Gen3 | Gend | Gen 5 Complexity
Dus Freq. (GH:) 2.5 5 8 1 a2 a2
=
E Throug gt (G}] [16 52 2] 128 High Complexity
Physical Freaing HRZ KRZ + 2akdd
Link Diata Fiterity FORG FORG & FED
= i . . .
£ ‘Wire Froqoeal Variahla kagih packets Wariabde + Fied langth (Fity Hi gh Curnplatxi‘ty
Replay Protocol Facket ACKHAK Facket ACENAK + Fl7 azsed ACK
& | Packet Farmats 4 Header Types, 22 Packet types THeader Tyoes, 61 Facke? types
=]
B | 4 zrodit+ Flitcrecits, 2 shared
" | i n : i
& redit Froteco| 3 credit types craits High Complexity
I
= Ervcrwplion Suppan - Livk and Streaimend-o-end)

PCle Gen 5 = Gen 6 transition is highly complex
Figure 36: PCle transition complexity

Through SYCLOPS, HIRO was able to obtain evaluation boards and sample silicon for a
PCleGen 6 Switch to develop their switch in the form factor for EdgeMicroDataCenter. The
signal integrity testing will be executed Jan 2026, using the data from the evaluation boards.

D Model
3D Models Physical Switch

Figure 37: Models and physical design of PCle 6.0 switch

For a CXL 3.0 switch to be tested in CXL mode, you need, CXL 3.0 GPUs, CXL 3.0 memory
expanders (first samples shipping Dec 2025), CXL 3.0 root complexes (CPUs with Gen 6
controllers). The critical fact: There are no CXL 3.0 endpoints available today, and first devices
will become available 2026.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 38 of 44

%) SYCLOPS

Also, Gen 6 retimers, switches, and connectors are significantly more complex through the
introduction of PAM4 signalling and Forward Error Correction (FEC), which are required at 64
GT/s to maintain acceptable BER (bit-error rate). What our current evaluation board testbed
what we can do is provide the measurements for the signal integrity testing of the manufactured
switch for our microdatacenter. The next step in 2026 will be when cxl capable end point
become available to test the performance of the evaluation board and the board designed for
our microdatacenter.

Peripheral 1 Peripheral 2
L Purighara
eg eg L Bt
Accelerator or Accelerator or =
Memory Memory — =
PCle x16 PCle x16 - [
‘ [—
HIB
Mainboard
e x1
Next step 2026
CPU
CPIO PCle Switch Gen6
Aflas 3
CPIo PEX90144
PCle x16 PCle x16

Figure 38: Evaluation Board Switch, testbed set-up

Signal integrity of PAM-4 components is critical for the overall system. Simulation-based
verification was carried out using COM-HPC connector interfaces, and loss budgets were
defined together with the COM-HPC standardization committee. Signal integrity
measurements on real prototypes are planned for further evaluation= Signal integrity is
ensured.

5.3.3 CXL Research

As described in deliverable D3.2, HIRO has also put together an experimental testbed server
equipped with a CXL memory module. AN experimental evaluation was conducted on this
HIRO CXL testbed, which serves as a representative prototype of a next-generation
heterogeneous edge—cloud compute node. The hardware platform is based on a dual-socket
Intel Xeon 6740E system, equipped with local DDR5 memory per socket and external memory
devices attached via PCle/CXL. The configuration reflects early CXL-capable architectures
that are expected to become common in modular edge micro-data-centers, enabling memory
expansion, tiering, and future memory pooling scenarios. The system was configured in a
NUMA-aware manner to allow explicit control over memory placement and access paths. With
current hardware availability we were able to set up a Fabric Attached Memory File System
(FAMFS).

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 39 of 44

&) SYCLOPS

Host System

mnt/famfso
FAMFS Mount

docker run -v docker run -v docker run -v

Reader B Container Reader A Container

All map to Allmap to All map to

Same Physical CXL
{ Memory |

Figure 39: Multi-container FAMFS sharing architecture

On the software side, a Linux operating system with CXL support enabled was used. CXL
memory was exposed to the operating system in two distinct modes: (i) NUMA mode, where
CXL memory appears as an additional NUMA node and can be used as Tier-2 system memory,
and (ii) devdax mode, which enables direct, page-cache-free access to CXL memory regions.
Benchmarking tools, scripts, system configuration outputs, and result plots were collected and
stored together with the experiments to ensure traceability and reproducibility of the
measurements. This setup allows both low-level characterization and application-level
evaluation, while remaining close to realistic deployment conditions.

The primary low-level characterization was performed using a pointer-chasing
microbenchmark. This benchmark measures average memory access latency by traversing a
randomized linked list in memory, thereby minimizing the effects of caching and prefetching.
The benchmark was executed against three memory classes: local DRAM, cross-socket
DRAM, and CXL-attached memory. Each test was repeated under different load conditions,
including no additional system load, light contention, and heavy contention involving multiple
CPU cores performing concurrent read and write operations. This approach provides insight
into both baseline latency and scalability under realistic contention scenarios.

In addition to microbenchmarks, an application-level experiment was performed using a Self-
Organizing Maps (SOM) workload. SOM is a memory-intensive algorithm commonly used in
data analysis and machine learning contexts. The application was configured to allocate its
working data either from local DRAM or from CXL-attached memory, enabling a direct
comparison of performance behaviour and validating the usability of CXL memory in realistic
computational workflows rather than purely synthetic tests.

The measurements confirm the expected latency hierarchy across the memory tiers. Local
DRAM access exhibited the lowest latency, with values on the order of approximately 120—
190 nanoseconds depending on system load. Cross-socket DRAM access showed
significantly higher latency, typically in the range of approximately 460—-670 nanoseconds.
Access to CXL-attached memory resulted in higher latency than DRAM, but remained well
within the range expected for memory-semantic access rather than storage-class access.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 40 of 44

$) SYCLOPS

Under heavy contention, latency increased for all memory classes, with CXL memory showing
a more pronounced sensitivity to concurrent access, but without exhibiting instability or
pathological behaviour.

Average Memory Access Latency (No Load) Average Memory Access Latency (Heavy Load)

700 A

600 1

600

500 4

400

300 A

Latency (ns)
Latency (ns)

200

100 4

Local DRAM Cross-socket DRAM CXL Memory Local DRAM Cross-socket DRAM CXL Memory

Figure 40: Average memory access latency under no-load conditions/ heavy load for local DRAM, cross-
socket DRAM, and CXL-attached memory on the HIRO testbed

From a functional perspective, the operating system correctly enumerated and managed the
CXL memory devices. NUMA policies and tools such as numactl were successfully used to
bind application memory allocations explicitly to the CXL memory region. In devdax mode, the
system enabled zero-copy access to shared memory regions, demonstrating the feasibility of
using CXL memory as a shared resource across multiple processes or containers. All
benchmark artefacts, including logs and plots, were successfully generated and archived,
supporting reproducibility and further offline analysis.

The experiments demonstrate that CXL memory can be effectively used as a Tier-2 memory
layer, providing capacity expansion beyond local DRAM while preserving load/store semantics.
Although access latency is higher than for DRAM, it remains orders of magnitude lower than
traditional storage solutions, making CXL memory suitable for large-footprint applications such
as Al inference, in-memory analytics, and data-intensive edge workloads. The results also
show that contention affects CXL memory performance more visibly than local DRAM,
highlighting the importance of intelligent workload placement and memory-aware scheduling.

A key finding is the validation of two complementary CXL usage models within the same
platform. NUMA-exposed CXL memory supports transparent memory expansion and tiering,
while devdax-based access enables zero-copy shared memory usage across processes and
containers. This dual capability significantly broadens the applicability of CXL in future edge-
cloud systems, particularly in modular and composable architectures where resources are
dynamically allocated. Overall, the maturity of the hardware—software stack is sufficient for
meaningful experimentation, although integration complexity and management tooling remain
areas for further development.

Recent external work (https://Inkd.in/g9eMHinw) has demonstrated how CXL 3.0-attached
devices equipped with embedded controllers can be used not only for memory expansion, but
also for intelligent, workload-aware memory management. In the context of large language
model serving, this approach enables fine-grained KV-cache placement policies that
significantly improve effective memory utilization and reduce end-to-end latency. While these
results are not part of the present evaluation, they highlight the importance of coupling CXL-

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 41 of 44

https://lnkd.in/g9eMHinw

&) SYCLOPS

capable hardware with software and firmware-level intelligence. The current HIRO testbed and
benchmarking setup provide a suitable foundation for exploring similar concepts in future work,
including policy-driven memory tiering, controller-side decision making, and application-
specific optimization strategies.

In order to demonstrate integration of the EMDC hardware deployed by HIRO with rest of the
SYCLOPS stack, we use SYCLDB once again as the vehicle. We focus exclusively on the
CXL server as it has PCle 5.0 interface and a fully functional hardware/software environment
to get all SYCLOPS components integrated. We installed both DPC++ and ACPP on the CXL
server. We compiled SYCLDB using both compilers, and ran a benchmarking workload to
confirm that SYCLDB works in both cases, on both the CPU available in the CXL server and
the L40S GPU. The figure below shows the execution time of SYCLDB under various queries
from the Star Schema Benchmark, when the data is resident in CPU memory. As the server is
a dual-socket configuration, and as the externally attached CXL memory is configured to be
made visible as a separate NUMA domain, the data accessed by SYCLDB can be stored in
one of three possible locations: (i) On the same NUMA node as the GPU, (ii) on the remote
NUMA node, or (iii) on the CXL memory. The figure shows the performance of all three cases.

Execution time on CXL server with NUMA configurations

1000 - MM NUMA node 0
NUMA node 1
s NUMA node 2 (CXL)

800

600

Execution time (ms)

400 A e B

200 -

qll ql2 ql3 @21 q22 a23 a3l q32 033 34 qal 2 43

Figure 41: SYCLDB results on the CXL server

There are several important observations to be made from the figure. First, notice that we are
demonstrating a fully functional, SYCL-based database query execution on GPU with the data
sitting in CXL memory. This really brings together the work done in the entire SYCLOPS stack
from the hardware level to the libraries level, and demonstrates clearly that the integration is
fully functional. Second, as expected, the CXL memory (shown as NUMA node 2) has a much
higher latency than the other two NUMA nodes. As SYCLDB kernels run on the GPU, they are
bound by the PCle bandwidth in case where the data sits in host memory (NUMA node 0 or
NUMA node 1). When data sits in CXL memory, there is an additional penalty paid, which is
expected, that is clearly visible in end-to-end query performance. This clearly motivates the
need for further research on data placement policies for hybrid CPU-GPU query execution in
the presence of an additional memory tier introduced by CXL. We plan to pursue such work in
the near future continuing the strong collaborations put in place during the SYCLOPS project.

Future work should extend the evaluation to more advanced CXL fabrics, including CXL 3.x
and emerging CXL 4.0 capabilities, with a focus on multi-level switching, memory pooling, and

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 42 of 44

%) SYCLOPS

multi-host access. Evaluating newer PCle Gen6 and CXL-enabled switches is expected to
provide insights into latency, bandwidth, and scalability improvements over the current
generation. At the system-software level, further research is recommended on NUMA-aware
schedulers, automated memory tiering policies, and tighter integration between CXL fabric
management and platform management controllers.

From an application and orchestration perspective, additional benchmarks using full Al
inference pipelines, analytics workloads, and multi-container workflows should be conducted
to quantify end-to-end benefits. In particular, integration with higher-level orchestration
frameworks and intent-driven provisioning mechanisms would allow exploration of how CXL
resources can be dynamically allocated and reclaimed in operational environments. Finally,
longer-term research should address reliability, isolation, and security aspects of shared CXL
memory, as well as monitoring and telemetry mechanisms needed for production-grade
deployment in edge micro-data-centers.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 43 of 44

%) SYCLOPS

6 Conclusion

The SYCLOPS project has successfully fulfilled its mandate to scale extreme analytics through
a unified, cross-architecture hardware-software stack based on open standards. By
demonstrating performance-portable acceleration across three distinct and demanding
domains—High Energy Physics, Genomics, and Autonomous Systems—the project has
proven that vendor-neutral solutions can meet or exceed the performance of proprietary,
vendor-locked ecosystems.

The integration of SYCL support into the ROOT framework and Cling interpreter has enabled
interactive, hardware-accelerated data analysis within Jupyter Notebooks. The newly
developed GenVectorX library demonstrated up to 3.5x speedup on heterogeneous backends
while reducing energy consumption by approximately 73.9% for the Particle Acceleration
(HEP) use case.

Through the SYCL-GAL library, the project achieved a 4.6x reduction in total execution time
for the gold-standard GATK germline variant calling pipeline for the genomics use case.
Notable highlights include an 11x improvement in preprocessing stages and accelerating the
core pairHMM computation by two orders of magnitude.

Finally, SYCLOPS unified the portability of portDNN with the oneDNN ecosystem, allowing the
PointNet architecture to run seamlessly across diverse hardware without application-level code
changes for the autonomous systems use case. Optimized kernels for RISC-V vector
extensions (RVV) achieved performance gains of up to 18.8x.

In conclusion, SYCLOPS has far exceeded its original KPI targets. It has provided a concrete
demonstration that a software stack built on open standards like SYCL can deliver substantial
speedups over CPU baselines and remain highly competitive with mature, proprietary
solutions. This work ensures a more sustainable, energy-efficient, and vendor-independent
future for high-performance computing in Europe and beyond.

Copyright © 2023 SYCLOPS | DELIVERABLE 2.3:
Use case integration, validation, and demonstration report Page 44 of 44

