SYCLOPS

Deliverable 3.2 - EMDC v2.0

with RVV accelerator release

EEEEEEE

%) SYCLOPS

&%) SYCLOPS

Project acronym: SYCLOPS

Project full title: Scaling extreme analYtics with Cross architecture
accelLeration based on OPen Standards

Call identifier: HORIZON-CL4-2022-DATA-01-05
Type of action: RIA
Start date: 01/01/2023
End date: 31/12/2025
Grant agreement no: 101092877

D3.2 - EMDC v2.0 with RVV accelerator release

Executive Summary: This deliverable documents the progress made in the SYCLOPS
project's infrastructure layer, specifically focusing on "Task 3.2: RISC-
V reference platform™ and "Task 3.3: EMDC assembly". The primary|
objective of these tasks was to deploy EMDC v2.0, a hardware
testbed designed to support the evaluation of SYCLOPS use cases
using software developed in the platform and libraries layers. This has
been achieved by the deployment of a new hardware testbed
contains three key components: (i) a proprietary RISC-V platform
from CSIP featuring vector extensions, (i) an open-source RISC-V|
platform known as SYCLARA developed within SYCLOPS, and (iii) &
CXL-enabled EMDC testbed.

WP: 3
Author(s): Jan Kastil, Martin Bozek, Mojtaba Rostamibilandi, Fred Buining
Editor: Raja Appuswamy
Leading Partner: CSIP
Participating Partners: HIRO, EUR

Version: 1.0 Status: Draft
Deliverable Type: Other Dissemination Level: PU
Official Submission 30-Sep-2025 Actual Submission 06-Oct-2025
Date: Date:

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 2 of 35

%) SYCLOPS
Disclaimer

This document contains material, which is the copyright of certain SYCLOPS contractors, and may not
be reproduced or copied without permission. All SYCLOPS consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information
contained in this document may require a license from the proprietor of that information. The
reproduction of this document or of parts of it requires an agreement with the proprietor of that
information.

The SYCLOPS consortium consists of the following partners:

Partner Organisation Name Partner Organisation Short Country
Name
1 EURECOM EUR FR
2 INESC ID - INSTITUTO DE INESC PT
ENGENHARIADE
SISTEMAS E COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA
3 RUPRECHT-KARLS- UHEI DE
UNIVERSITAET HEIDELBERG
4 ORGANISATION EUROPEENNE CERN CH
POUR LA RECHERCHE
NUCLEAIRE
5 HIRO MICRODATACENTERS B.V. HIRO NL
6 ACCELOM ACC FR
7 CODASIPSRO CsIP Cz
8 CODEPLAY SOFTWARE LIMITED CPLAY UK

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 3 of 35

%) SYCLOPS

Document Revision History

Version Description Contributions

0.1 Structure and outline EUR
0.2 Updated description of CSIP RISC-V platform CSIP
0.3 Updated description of SYCLARA EUR
0.4 Updated description of HIRO EMDC HIRO
1.0 Final draft EUR
Authors
Author Partner
Jan Kastil CSIP
Martin Bozek CSIP
Mojtaba Rostamibilandi EUR
Fred Buining HIRO
Reviewers

Name Organisation

Aleksandar llic INESC
Vincent Heuveline UHEI
Stefan Roiser CERN
Nimisha Chaturvedi ACC

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 4 of 35

%) SYCLOPS

Table of Contents

N [o1 (oo (U Td 1o o I PP PPPPPPPPPP 7
2. CSIP Vector-enabled RISC-V PIAtfOrmcooviiiiiiiiei e e et e e e e e e eeneenns 9
2.1 VecCtor-enabled PrOCESSOrN COTE.......cccii e 9
2.1.1 OVErVIEW Of RISC-V COME ..cooiiiiiiiiiiieeeeeeeeeeeeee ettt 9
2.1.2 Technical SPECIfICALIONSuuuueii i e e e et e e e e e e e e aar e e eeaes 9
2.1.3 Description of the RVV EXteNSioN fOr A730ooviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 10

A e € N o - £ 0] 1 o TSP 12
AR O o1 = 1] 4 To IS VA1 (=] 1 [PPSR 13
2.4 EXPEriMENtal RESUITS ... 15
2.4.1 Benchmarking in SIMUIALION...........coiiiiiiiiiiiiiiiiiieeeeeeeeeee e 15
2.4.2 OPENBLAS EVAIUALIONoeviiiii it s e e e e et e e e e e e e e e e aa e e e e e e e e eaaraaaaaeeaes 18
2.4.3 Dot product emulation beNCAMArKcoiiiiiiiie e 23

2.5 SUIMIMABIY ettt ettt e ettt e e e e ettt e et e s e e e e et e ee e e e et e e e e et eee e e bt e e e e et e e nn e b e s e e eaeeeennnnnnn s 25
3. SYCLARA Open Source RISC-V PlatfOrmcouiiiiiiiici ittt e e e 26
3.1 SYCLARA Open Source RISC-V PIatformciiiii it 26
T Y 7= | (U= o o P 27
TR I U |1 11 1 1= 1Y TP PPTPPPTR 27
A @3 =T o = o] [=To B =15 O =211 o= o RN 28
4.1 PCle CXL SWItCh DEVEIOPIMENTuunii et e e e et e e e e e e e earr e e e e e e 28
4.1.1 Architecture and IMPIEMENTALIONuuueiiiiiiiiiiiiiieee bbb e bbb e eeeneeeeneeeennee 30
4.1.2 Prototyping and Validation..............oouuiiiiiiii e 31

4.2 CXL-€NADIEA GPU SEIVET ... 33
LT O o od 113 o o 1P 35

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 5 of 35

%) SYCLOPS

This deliverable documents the progress made in the SYCLOPS project's infrastructure layer, specifically
focusing on "Task 3.2: RISC-V reference platform" and "Task 3.3: EMDC assembly". The primary objective
of these tasks was to deploy EMDC v2.0, a hardware testbed designed to support the evaluation of
SYCLOPS use cases using software developed in the platform and libraries layers. This has been
achieved by the deployment of a new hardware testbed contains three key components: (i) a proprietary
RISC-V platform from CSIP featuring vector extensions, (ii) an open-source RISC-V platform known as
SYCLARA developed within SYCLOPS, and (iii) a CXL-enabled EMDC testbed.

Executive Summary

On the RISC-V side, significant work was completed on both the proprietary and open-source RISC-V
platforms. The CSIP Vector-enabled RISC-V Platform utilizes the Codasip A730 core, a 64-bit in-order
dual-issue processor, integrated with a Vector Processing Unit (VPU) that fully conforms to version 1.0 of
the RISC-V "V" Vector Extension specification. This proprietary platform was deployed on the AMD
VCU118 FPGA Evaluation Kit. Initial simulation results confirmed performance gains, with speedups
ranging up to 9x. Concurrently, the SYCLARA open-source platform was developed by EUR, integrating
the CVAG6 RISC-V core with the ARA2 RVV accelerator and incorporating an Ethernet module to enable
interaction with a SYCL host. Preliminary evaluation using SYCL kernels on SYCLARA showed impressive
performance improvements, reaching speedups up to 6.27x for 1D convolution and up to 6x for matrix
multiplication. Through these results, we have exceeded the target KPI of 2x speedup we set to achieve
with RVV.

On the EMDC side, we have deployed a CXL-enabled EMDC Testbed that integrates switches from the
Broadcom PEX90000 family, which supports PCle Gen6 (64 GT/s data rates) and has roadmap support
for CXL 3.0. Prototyping and validation efforts confirmed reliable 64 GT/s signaling with PAM-4, ensuring
the fabric is ready to adopt CXL 3.0 when the ecosystem matures. Additionally, a stand-alone CXL 2.0
server was established in collaboration with Supermicro and Micron to allow SYCLOPS partners to
investigate performance tradeoffs between local DRAM and CXL memory.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 6 of 35

&) SYCLOPS

1.Introduction

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer,
(i) platform layer, and (iii) application libraries and tools layer.

i | Autonomous systems |

| High-energy physics analysis | Applications

]
! | Precision oncology |

77 Libraries &
i‘, ... ~i TOOlS

SYCLRuntimes § > oo Platform

Interpreter

RISC-V = =
RVV accelerator H bl H

Figure 1. SYCLOPS architecture

1. Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and
provides heterogeneous hardware with a wide range of accelerators from several vendors.

2. Platform layer: The platform layer, provides the software required to compile, execute, and
interpret SYCL applications over processors in the infrastructure layer.

3. Application libraries and tools layer: The libraries layer enables API-based programming by
providing pre-designed, tuned libraries for various deep learning methods for the PointNet
autonomous systems use case (SYCL-DNN), mathematical operators for scalable HEP analysis
(SYCL-ROOT), and data parallel algorithms for scalable genomic analysis (SYCL-GAL). This layer
also contains conversion tools, to facilitate porting of CUDA applications into SYCL, and profiling
tools to enable the analysis of cross-architecture SYCL applications.

This deliverable presents the work carried out in the infrastructure layer on EMDC v2.0 as highlighted
in Figure 1 in the context of “Task 3.2: RISC-V reference platform” and “Task 3.3: EMDC assembly ”
of WP3 in the SYCLOPS project. The goal of these tasks was to build an RVV-capable, RISC-V
reference platform and deploy it together with CPU, GPU, and FPGA accelerators from other vendors
in a hardware testbed that will be used to support evaluation of SYCLOPS use cases using software
developed in platform and libraries layers.

At M18, we had developed and deployed v1.0 of the SYCLOPS EMDC which was described in
deliverable D3.1. At M33, we have developed and deployed v2.0 of the SYCLOPS hardware testbed
containing three key components: (i) A proprietary RISC-V platform from CSIP with support for vector
extensions, (ii) an open-source RISC-V platform called SYCLARA we have developed in SYCLOPS,
and (iii) a CXL-enabled EMDC testbed.

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level overview of the
overall SYCLOPS architecture and positions this deliverable with respect to both components in the

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 7 of 35

%) SYCLOPS

SYCLOPS stack and WP/tasks in the work plan. Sections 2 and 3 provide an overview of the work done
on the proprietary CSIP RISC-V core with vector extensions and the open-source SYCLARA RISC-V
platform in the context of “Task 3.2: RISC-V Reference Platform”. Section 4 provides an overview of the
work done in CXL-enabled PCle 6.0 switching for HIRO’s next generation EMDCs in the context of “Task
3.3: EMDC Assembly”.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 8 of 35

%) SYCLOPS

2. CSIP Vector-enabled RISC-V Platform

This section describes the RISC-V processor with Vector extension designed by CSIP. The Vector
extension allows RISC-V processor to us the SIMD parallelism to speed up the SYCL computation kernels.

First, we describe the RISC-V core itself. The partner CSIP provided the Vector extension for the A730
application core. A730 is in-order dual issue processor with 9-stage pipeline. Then, we introduce the FPGA
platform called Hobgoblin. Hobgoblin was developed for the emulation of the Codasip processor cores. It
provides all peripheral necessary to execute binaries on the A730 as well as ethernet interface used to
connect with the outside environment. We also briefly describe the Linux operating system used to enable
OneAPI construction Kit server. The provided Linux distribution enabled the vector instruction to the user
space applications but does not use them itself. Any Linux binary compiled for the RISC-V with Vector
extension can be executed on the platform. Finally, we present an evaluation of the platform using several
benchmarks.

2.1 Vector-enabled processor core

The foundation of this RVV integration into EMDC v1 and v2 is the Codasip A730, an advanced,
customizable RISC-V core. The Codasip A730 is a versatile mid-range 64-bit dual-issue in-order
application core, well-suited for a broad spectrum of applications due to its significant performance
improvements over previous generations. Its compliance with the RVA22 RISC-V profile further solidifies
its position as a robust and standard-compliant foundation for Vector extension. The CSIP’s development
work in the SYCLOPS project contributes to the larger activity focused on the implementation of the Vector
extension and its integration in the A730.

Architecture: 64-bit in-order dual-issue RISC-V core.

ISA: Supports base integer set, RV64I.

Microarchitecture: In order, 9 stages, dual issue pipeline.

Configurations: Available in single- and multi-core configurations, with a cluster featuring full
coherency, shared L2 cache, and an interrupt controller compliant with the RISC-V standard.

e Performance: 2x the performance of previous generations, designed for complex compute tasks
in power-constrained devices.

e Customization: Flexible design with options to configure the number of cores (one to four),
memory protection, branch prediction, cache sizes, and TLBs.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 9 of 35

%) SYCLOPS

System bus T T DMI
RISC-V
CODARISC-V CPU

Integration interfaces $ ‘L Issue interface

Vector Processing Unit

Forwarding Interface

ITER Unit Multiplication Unit
Branch predictor

User Custom Optimizations

L1 Instructi
nstruction L1 Data Cache L2 Cache
Cache

l was

Figure 2. High-level overview of the A730 RISC-V core and Vector Processing Unit

The Vector Processing Unit, representing the RVV accelerator, is designed for full conformance with
version 1.0 of the RISC-V "V" Vector Extension specification, which is a foundational document for vector
processing in the RISC-V ecosystem. Section 18.3, specifically titled "V: Vector Extension for Application
Processors," outlines the stringent requirements for vector units designed for general-purpose computing
environments. The official reference for this section can be found at: hiips:/lists.riscv.org/g/tech-vector-
ext/attachment/686/0/riscv-v-spec.pdf#page=94.

The design of the CSIP’s vector unit incorporates several key attributes and design choices that balance
performance, area and complexity:

Memory Access Limitations: The vector unit intentionally does not support access to non-idempotent
and/or non-cached memory. However, it fully supports misaligned memory access for cached, idem-
potent memory during vector load/store operations.

Vector Length (VLEN): For the Codasip A730 processors, the planned VLEN is 128 bits. This length
is consistently twice the XLEN (eXtension Length) and representing the maximum data size the
memory subsystem can transfer in a single cycle.

Implementation Model: The vector unit is realized as a series of specialized vector execution units
that are tightly integrated with the scalar processor.

Issue Model: The vector unit operates as a single-issue pipeline, meaning it cannot simultaneously
issue instructions to multiple execution units within the same clock cycle. This design choice prioritizes
simpler control logic and potentially faster time-to-market over maximizing instruction-level parallelism,
which is a common trade-off in processor design.

Memory Coherence: All memory access for the vector unit is handled by the scalar machine's L1
cache, ensuring inherent data coherence between the scalar and vector processing elements.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 10 of 35

https://lists.riscv.org/g/tech-vector-ext/attachment/686/0/riscv-v-spec.pdf
https://lists.riscv.org/g/tech-vector-ext/attachment/686/0/riscv-v-spec.pdf

%) SYCLOPS

Pipeline and Register Management: Instructions and their constituent micro-operations (WOPs) are
issued and complete in-order, without the use of register renaming. The width of the vector datapaths
is matched to the VLEN, and the memory interface width also corresponds to VLEN.

SIMD Operation: Arithmetic operations within the vector unit (excluding memory access operations)
function in a simple Single Instruction, Multiple Data (SIMD) manner. This allows all elements within a
VLEN-sized vector register to be processed in parallel. For a VLEN of 128 bits, this translates to 16
operations on 8-bit elements, 8 operations on 16-bit elements, 4 operations on 32-bit elements, or 2
operations on 64-bit elements.

SVEi;’:’h§EffeCtive Element Description (VLEN = 128)

8 16 operations of 8-bits each
16 8 operations of 16-bits each
32 4 operations of 32-bits each
64 2 operations of 64-bits each

No Chaining: The design explicitly avoids chaining, meaning that results are forwarded as a complete
vector register rather than individual elements. This simplification in forwarding logic may introduce
stalls if dependent operations require only a subset of elements, representing another design consid-
eration that balances complexity with potential performance gains.

LMUL Implementation: The vector register grouping (LMUL) feature is implemented through a se-
guencer that orchestrates the issuance of multiple micro-operations to complete the required architec-
tural instruction.

Multi-cycle Operations: The vector sequencer is also responsible for managing vector instructions
that require multiple cycles to complete, such as vector reduction operations.

Vector Register File: The vector register file is equipped with three read ports and a single write port.
The vO mask register is shadowed in flip-flops, which eliminates the need for an additional read port
specifically for vO.

Execution Unit Sharing: There is no attempt to share execution units between the scalar and vector
machines; for instance, the Floating-Point Unit (FPU) is kept separate.

Pipelined ALUs: Arithmetic execution units are generally pipelined, allowing them to initiate or com-
plete a new micro-operation every clock cycle, irrespective of the element size. Exceptions to this are
the divide and square root operations, which are iterative and cannot be pipelined.

Byte-Lane Cross-Bar: The implementation assumes that a full byte-lane cross-bar switch can be
achieved within a single clock cycle. This implies that for a VLEN of 128 bits, each of the sixteen
destination bytes can arbitrarily select data from any of the sixteen input bytes.

Vector Memory Load/Store: These operations are executed as a series of MEM_WIDTH-aligned
accesses to memory. Single-cycle access is achieved when EMUL=1 and memory addresses are
word-aligned. If addresses are not aligned, additional MEM_WIDTH-aligned accesses are required.
Interrupts and Exceptions: For vector instructions requiring multiple micro-operations, interrupts are
generally disabled within the architectural instruction. However, a select few very long-running opera-
tions (exceeding 100 cycles) permit interrupts at specific points. Similarly, certain exceptions, such as
page faults, may be taken during vector load/store instructions, utilizing the vstart mechanism to ena-
ble instruction restart.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 11 of 35

%) SYCLOPS
2.2 FPGA Platform

To be able to emulate the core the FPGA emulation platform is provided. The purpose of the platform is
to run the core in FPGA fabric and provide all peripherals necessary to run operating system. The ethernet
was selected to facilitate connection with outside environment.

nvw_ready, tpu_rst_req, sw_rst, rst_req

External l
Reset

E—b Reset Cirl |— resets

i AX
Interconnect
if_mem ‘
- -
User Timer
AT30 CPU
ROM [
+ RVV Extension
SPI SD Card
FLASH
RAM < o
Y Y
. UART = UART
v)
JTAG-AFB interrupis PLIC ;‘j B :
I = LED
GPIO = Switch
E“ — sw_alarm,
ACLINT E R sw_rst
Unlock I
1 1
PR v ready . Ethernet > Ethemnet
@‘J g PHY
[+ —Password—] NV Emulator ;:; -
 — o :
TDH
TPU Memory Controller DDR
o
JTAG [+ —Rnd[31:0— g
TENG ;:2 o
[validc— z '
KEY
[] CodasipIP
[xilinx 1P

Figure 3. The FPGA Platform High Level Architecture for EMDC v2.0

The Figure 2 shows the block diagram of the FPGA platform. For the EMDC v2.0 release, the FPGA
platform was strategically upgraded to the AMD VCU118 Evaluation Kit, featuring the Virtex UltraScale+
XCVU9P FPGA. This transition was necessitated by the escalating logic and memory capacity
requirements of the integrated RVV accelerator and the broader EMDC v2.0 architecture. The VCU118
provides a substantial increase in programmable logic resources, a significantly more robust memory
subsystem (2.5 GB DDR4 SDRAM), and enhanced high-speed 1/O capabilities, all critical for
accommodating the expanded design complexity, memory-intensive workloads, and high-throughput data
processing demands of the advanced edge microdatacenter. Key features and specifications of the board
include:

e FPGA: Virtex UltraScale+ XCVU9P FPGA

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 12 of 35

%) SYCLOPS

e Logic Cells: 2.5 million
e DSP Slices: 1,248
e Transceiver Speeds: Up to 40 GB/s
e Memory: 2.5 GB of DDR4 SDRAM, 4 GB of QSPI flash
e High-Speed Connectivity: 1000Mbps Ethernet ports
e Connectivity and On-board I/O:
o FMC Connectors: FMC, FMC+
o Pmod Connectors
e Programming Flexibility: Vivado Design Suite and PetaLinux

Unfortunately, the VCU118 does not have the SD Card slot. As such, the FMC extension board was
provided by CSIP. This board contains another 1000Mbps ethernet port together with the SD Card
connector.

The SDCard from this port is used to boot up the software the FPGA bitstream is programmed. The FPGA
platform support the secure boot process which allows to run only the cryptographically signed binaries.
The started binaries may be the final application or the operating system bootloader.

Unfortunately, unlike the Genesys 2 board used for the EMDC v2.0 release, the VCU118 does not support
the loading of the bitstream from the SDCard itself. As such, the bitstream must be stored on the QSPI
flash or programmed into FPGA directly by JTAG programming interface.

Therefore, platform contains two JTAG chains. The first chain contains the FPGA itself and is used to
program the bitstream into the FPGA through Vivado tool. The second JTAG chain contains only the A730
core. The second JTAG chain is used to connect the debugger to the core itself.

2.3 Operating System

The software environment supporting the EMDC v2.0 with the RISC-V platform has been prepared to
ensure a robust and flexible development ecosystem.

e Linux Distribution: The Poky distribution, a reference embedded Linux distribution, has been
specifically modified to support the FPGA Platform.

e Yocto Manifest: The yocto manifest for this modified distribution is publicly available on GitHub,
promoting transparency, collaboration, and reproducibility of the software environment.

e System Access: The system offers versatile access methods, including the UART console and
secure shell (SSH) over Ethernet.

The final Linux distribution is based on the poky distribution which is further modified to meet all the
SYCLOPS requirements.

The first important modification is the enablement of the Vector extension. To enable the use of vector
instruction in the user space application, vector extension must be enabled in the linux kernel configuration
file.

CONFIG_RISCV_ISA_V=y
CONFIG_RISCV_ISA_V_DEFAULT_ENABLE=y
CONFIG_RISCV_ISA_V_UCOPY_THRESHOLD=25600000000

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 13 of 35

%) SYCLOPS

As can be seen from previous figure, the Vector ISA was enabled, and it use was allowed by default.
However, the use of vector instruction for the memory copy was allowed only for the prohibitively large
memory blocks. This configuration was selected to ensure that while the vector instructions and registers
are handled correctly by the kernel, they are not used for the kernel operation.

Even if the kernel is configured to support vector extension by default, it will not use vector instruction if
they are not available in the HW. Therefore, the device tree for the platforms must contain the vector
support as well.

To ensure the correct comparison with the previous version of the platform. The rest of the Linux binaries
were not recompiled with vector support. Therefore, only application that uses the vector instruction will
be the evaluated user space application downloaded over SSH interface. This is to ensure that the
measured speed up is cause by the parallelization in the evaluated application instead of more efficient
operating environment.

root@hobgoblin-a730:~# openblas_utest_ext
<around 1500 Lines removed>

TEST 1520/1522 csbmv:upper_k_2_inc_b_1_inc_c_1_n_100 [OK]
TEST 1521/1522 csbmv:upper_k_1_inc_b_1_inc_c_1_n_100 [OK]
TEST 1522/1522 csbmv:upper_k_0_inc_b_1_inc_c_1_n_100 [OK]

RESULTS: 1522 tests (1522 ok, 0 failed, 0 skipped) ran in 75662 ms
root@hobgoblin-a730:~#

For validation that the user space application can access the vector instruction, openblas extended
regression test binary (openblas_utest _ext) was added into the Linux distribution. When the Linux OS
boots up, user can execute this binary. If the VPU is working and available, all tests will pass without any
issues. Otherwise, the error messages will appear.

The test binary may be executed through console access over UART or over the SSH connection. To run
the secure shell connection, the platform must be connected to the ethernet. By default, the Linux boot up
with static IP (10.15.51.61). The Linux distribution contain also dhcp client so it is possible to change the
network configuration to accept the IP address from the DHCP server.

To change network setting, the file /etc/network/interfaces on SDCard must be modified. The SDCard
contains two partitions, one with the bootloader and kernel image. The second partition contain the Linux
filesystem. This partition is mounted and accessed from the Linux on the FPGA. After the network is
correctly set up, the board is available through secure shell and as such can be used to run arbitrary SW
compiled for the RiscV with Vector extension.

4.1 Integration with oneAPI Construction Kit

Integration with the oneAPI Construction Kit is a critical aspect of the software environment, enabling
broader industry adoption and heterogeneous computing paradigms. This integration involved three key
areas:

e Platform Preparation: Ensuring the FPGA board is fully prepared to interface with the oneAPI
construction kit, which includes integrating the RISC-V core with the necessary software environ-
ment.

e Software Environment Setup: Establishing a complete development toolchain, including compil-
ers and debuggers, that are fully compatible with the RISC-V architecture. This also encompasses

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 14 of 35

%) SYCLOPS

the deployment of a rich Linux operating system, which is fully supported by the A730 RISC-V core
and the RVV Extension.

e Testing and Validation: Conducting comprehensive testing to verify the compatibility and perfor-
mance of the integrated system. This phase leverages instruction-accurate and cycle-accurate
models, which are key for early software development and debugging, ensuring the system meets
its performance and functional targets.

2.4 Experimental Results

2.4.1 Benchmarking in simulation

The first analysis of the designed VPU was done in the simulation. We run the VPU core in the simulation
and executed small kernels for the basic vector and matric operations.

To evaluate the VPU-extended core, we used Codasip’s internal verification environment, coreTB. This
environment runs RTL simulation of the processor in a selected third-party simulator, automatically
generates instruction traces from the simulated core, and compares them with traces from a golden model
(e.g., the SAIL model).

The benchmark C code was compiled with a standard toolchain, and the resulting binaries were loaded
into simulated memory within coreTB. The simulation then accesses memory and boots the processor as
real hardware or an FPGA would.

Because simulation is significantly slower than emulation, we did not run a Linux OS. Instead, the
benchmarks were executed as bare-metal applications. This initial experiment used four vector algorithms
with different degrees of inherent parallelism. Each algorithm used single-precision floats, so the
measured VPU processes four elements at a time. The benchmark marks the start and end of each
function, allowing exact measurement of the number of clock cycles spent in computation from the
simulation logs.

Table 1 summarizes the simulation measurements. Observed speedups range from 1.5x to 5%, depending
on the algorithm and input size.

The SYCLOPS KPIs target a 2x speedup. Vector addition and vector multiplication meet this target even
for the smallest datasets. The matrix-vector product reaches the target for sizes 32x32 and above. The
vector dot product does not meet the target - in the measured implementation, a scalar unit performs the
final accumulation after the multiplications, which limits the achievable speedup.

Overall, when sufficient parallelism is available, the vector extension delivers speedups above 4x in this
simulation study.

Operation Task Scalar Avg. | Vector Avg. Speedup Scalar Vector
Size Cycles Cycles (Scalar/Vector) Cycles/Elem Cycles/Elem
Vector Addition 64 501 170 2.95 7.83 2.66
Vector Addition 128 1053 263 4 8.23 2.05
Vector Addition 512 3891 1002 3.88 7.6 1.96
Vector Addition 1024 7640 1892 4.04 7.46 1.85
Vector Multiplication 64 639 164 3.9 9.98 2.56

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 15 of 35

%) SYCLOPS

Vector Multiplication 128 1239 261 4.75 9.68 2.04
Vector Multiplication 512 4625 998 4.63 9.03 1.95
Vector Multiplication 1024 9538 1890 5.05 9.31 1.85
Vector Dot Product 64 415 260 1.6 6.48 4.06
Vector Dot Product 128 792 488 1.62 6.19 3.81
Vector Dot Product 512 3150 1898 1.66 6.15 3.71
Vector Dot Product 1024 6209 3701 1.68 6.06 3.61
Matrix-Vector Product 8x8 958 636 151 119.75 79.5
Matrix-Vector Product 16x16 2963 1493 1.98 185.19 93.31
Matrix-Vector Product 32x32 11103 3972 2.8 346.97 124.12
Matrix-Vector Product 64x64 41952 15245 2.75 655.5 238.2

Table 1. Benchmarking time in clock cycles

Tab 2. column descriptions:

1. Operation

¢ Name of the computation being benchmarked (e.g., Vector Addition, Vector Dot Product, Matrix-Vector
Product). Serves as the row label.

2. Task Size
e Problem size for the row.
e For vector ops: the vector length n (e.g., 64, 128, ...).
e For Matrix-Vector Product: the matrix dimension nxn (e.g., 32x32), which produces n output elements.

3. Scalar Avg. Cycles
¢ Average number of clock cycles to complete the operation using the scalar (non-vectorized) implemen-
tation.
e Unit: cycles.
e If repeated runs were used, this is the mean across runs.

4. Vector Avg. Cycles
e Average number of clock cycles to complete the operation using the vectorized implementation.
e Unit: cycles.
e Mean across runs if repeated.

5. Speedup (Scalar/Vector)
¢ How many times faster the vector version is compared to scalar.
e Formula: Speedup = (Scalar Avg. Cycles) / (Vector Avg. Cycles)
e Interpretation: values > 1.0 indicate the vector version is faster; = 1.0 no change; < 1.0 regression.

6. Scalar Cycles/Elem

e Per-element cost for the scalar implementation.

e Formula (vector ops): Scalar Avg. Cycles / n
Formula (MxV): Scalar Avg. Cycles / n (since an nxn matrix—vector produces n outputs)
Interpretation: lower is better; shows efficiency independent of total size.

7. Vector Cycles/Elem
e Per-element cost for the vector implementation.
e Formula (vector ops): Vector Avg. Cycles / n
Formula (MxV): Vector Avg. Cycles / n
Interpretation: lower is better; directly comparable to Scalar Cycles/Elem to see per-element gains.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 16 of 35

&) SYCLOPS

Note: All cycle counts are hardware-clock cycles; convert to time with time = cycles / frequency.

Speedup vs Task Size — Vector Addition

Speedup vs Task Size — Vector Multiplication

128 512 1024
Task Size

Speedup vs Task Size — Matrix-Vector Product

16x16 32x32 64x64
Task Size

Cycles vs Task Size — Vector Multiplication

Scalar
Vector

4.0 5.0
38 a8}
X 36 Z4s
5 3
2 j}
B34 g 44
& 0
4.2
3.2
40}
3.0
64 128 512 1024 64
Task Size
Speedup vs Task Size — Vector Dot Product
1.68} 2.8}
1.67} 56l
1.66
2.4}
X 165f <
= X
Z164f EX
e 7}
2 7}
v 1.63F & 2.0}
1.62}
1.8f
1.61f
1.6}
1.60}
64 128 512 1024 ’
Task Size 8x8
Cycles vs Task Size — Vector Addition
8000 10000
Scalar
7000 Vector
8000
6000
5000 6000
0w
< 4000 K
> S
o O
3000 4000 f
2000
2000 f
1000
o i i L ot
64 128 512 1024 54
Task Size
Cycles vs Task Size — Vector Dot Product
Scalar
6000 Vector 0000
5000+
0000
4000
wv
K
5
& 3000 0000

128 512 1024
Task Size

Cycles vs Task Size — Matrix-Vector Product

Scalar
Vector

6.5}

wu
n

Cycles per Element
p w
n =]

3.5k

~
T

(=]

Cycles per Element
= w

%) SYCLOPS

Per-Element Efficiency — Vector Addition

Scalar/Elem
Vector/Elem

64

512

1024

128
Task Size
Per-Element Efficiency — Vector Dot Product
Scalar/Elem
Vector/Elem
64 128 512 1024

Task Size

Cycles per Element

Cycles per Element

10

5001

400

w
o
o

200

100

Per-Element Efficiency — Vector Multiplication

Scalar/Elem
Vector/Elem

64

128 512 1024
Task Size

Per-Element Efficiency — Matrix-Vector Product

Scalar/Elem
Vector/Elem

.
8x8

| 1 .
16x16 32x32 64x64
Task Size

Figure 4. Plots based on Table. 1, showing speedup, absolute cycles, and per-element efficiency.

To ensure the compliance of the RISCV Vector extension Codasip run multiple tests during the
development of the VPU in the FPGA emulation. While these tests are not benchmark on their own, they
provide the interesting and important view of the capabilities of the Developed HW.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release

Page 18 of 35

&) SYCLOPS

The experiments were run on the Linux emulation platform described in this document. The tests were
compiled as a Linux user space applications and they were executed from console. Each test was
responsible for measuring its own execution time, which was reported at the end of the test.

The openBLAS unit Test are testing a large part of the openBLAS capabilities and as such we used them
to evaluate the correctness of our VPU prototype together with the extensive verification in the simulation.

The openBLAS test measures the time needed to execute the given test set. Therefore, it is possible to
use them as crude benchmarks. We compiled the two version of the openBLAS library. Scalar version
was compiler for the GENERIC RISCYV target and generated test binaries were copied on the file system
of the emulation platform with suffix scalar.

make TARGET=RISCV64_GENERIC CFLAGS="—DTARGET=RISCV64_GENERIC"
BINARY=64 ARCH=riscv64 NOFORTRAN=1 CC=riscv64-unknown-linux-gnu-gcc
AR=riscv64-unknown-linux—-gnu-ar AS=riscv64-unknown-linux-gnu-as
LD=riscv64-unknown-linux-gnu-1d FC=riscvé64-unknown-linux-gnu-gfortran
HOSTCC=gcc HOSTFC=gfortran -7j32

The second version was compiled for the RISCV64_ZVL128B target, which is the GENERIC RISCV target
with Vector extension support. The names of vector binaries were given suffix vector and copied to
the same location as their scalar counterparts.

make TARGET=RISCV64 ZVL128B CFLAGS="-DTARGET=RISCV64 ZVL128B"
BINARY=64 ARCH=riscv64 NOFORTRAN=1 CC=riscv64-unknown-linux-gnu-gcc
AR=riscvb4-unknown-linux—-gnu-ar AS=riscv64-unknown-linux-gnu-as
LD=riscv64-unknown-linux-gnu-1d FC=riscv64-unknown-linux-gnu-gfortran
HOSTCC=gcc HOSTFC=gfortran -j32

The openBLAS version v0.3.30 source codes were compiled by the GNU Compiler Collection version
15.1.0

The benchmarking is controlled by the script that can be run from command line. This script executes
each testset inthe utest and utest ext and forwards stdout of the tests into the log file. Every
command is run two times and only the second time results are reported. This ensures that every test
binary is available in the filesystem cache and therefore the runtime is not affected by the time needed to
access SD Card.

Every of the openBLAS tests reports the time spend in the data preparation and the computation itself.
The following table summarizes the time for the tests run on the FPGA platform. Due to the nature of the
emulation, the Idefix core was running on 40MHz while the final ASIC is expected to run in the range of 1
to 1.7 GHz. Therefore, if run on the final product, the tests would run at least 40 times faster.

fork 515435 | 295913 | 1.741846421 | -42.58965728 | 83.48788504 | 1

zgemm 12923 10872 | 1.188649742 -15.8709278 | 2.093210469 | 3 z (complex128)

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 19 of 35

%) SYCLOPS

cgemm 11196 7256 | 1.542998897 | -35.19113969 | 1.813478636 | 3 ¢ (complex64)
ztrsv 7989 7598 | 1.051460911 | -4.894229566 | 1.294022939 | 2 z (complex128)
ztrmv 7906 7596 | 1.040810953 | -3.921072603 | 1.280578966 | 1 z (complex128)
zgemmt 7202 5662 | 1.271988697 | -21.38294918 | 1.166548155 | 3 z (complex128)
ctrmv 6482 5680 | 1.141197183 | -12.37272447 | 1.049925734 | 1 ¢ (complex64)
ctrsv 6420 5616 | 1.143162393 | -12.52336449 | 1.039883248 | 2 ¢ (complex64)
cgemmt 6196 4088 | 1.515655577 | -34.02194964 | 1.003600717 | 3 ¢ (complex64)
dgemmt 3662 2867 | 1.277293338 | -21.70944839 | 0.593154588 | 3 d (float64)
sgemmt 3224 2011 | 1.603182496 | -37.62406948 | 0.522209282 | 3 s (float32)
kernel_regress 2790 2298 | 1.214099217 -17.6344086 | 0.451911879 | 1

zimatcopy 2557 2426 | 1.053998351 -5.12319124 | 0.414171568 | 1 z (complex128)
cimatcopy 2179 1976 | 1.102732794 | -9.316200092 | 0.352944797 | 1 ¢ (complex64)
zgeadd 2096 2193 | 0.955768354 | 4.627862595 | 0.339500824 | 1 z (complex128)
zgemv 2022 1962 1.03058104 | -2.96735905 | 0.32751463 | 2 z (complex128)
cgeadd 1833 1651 1.11023622 | -9.929078014 | 0.296901245 | 1 ¢ (complex64)
cgemv 1707 1546 | 1.104139715 | -9.431751611 | 0.276492322 | 2 ¢ (complex64)
zomatcopy 1536 1498 | 1.025367156 | -2.473958333 | 0.248794497 | 1 z (complex128)
comatcopy 1309 1250 1.0472 | -4.507257448 | 0.212026039 | 1 ¢ (complex64)
dimatcopy 1282 1230 | 1.042276423 | -4.056162246 | 0.207652698 | 1 d (float64)
dgeadd 1168 1085 | 1.076497696 | -7.106164384 | 0.189187482 | 1 d (float64)
simatcopy 1084 1030 | 1.052427184 | -4.981549815 | 0.175581533 | 1 s (float32)
sgeadd 929 864 | 1.075231481 | -6.996770721 | 0.150475317 | 1 s (float32)
zsbmv 880 791 | 1.112515803 | -10.11363636 | 0.142538514 | 1 z (complex128)
csbmv 774 677 | 1.143279173 | -12.53229974 | 0.125369102 | 1 ¢ (complex64)
domatcopy 713 678 | 1.051622419 | -4.908835905 | 0.115488591 | 1 d (float64)
zspmv 704 596 | 1.181208054 | -15.34090909 | 0.114030811 | 2 z (complex128)
cspmv 602 457 | 1.317286652 | -24.08637874 | 0.097509301 | 2 ¢ (complex64)
somatcopy 590 556 | 1.061151079 | -5.762711864 | 0.095565594 | 1 s (float32)
zgbmv 173 168 | 1.029761905 -2.89017341 | 0.028021776 | 2 z (complex128)
cgbmv 144 139 | 1.035971223 | -3.472222222 | 0.023324484 | 2 ¢ (complex64)
zrot 132 122 | 1.081967213 | -7.575757576 | 0.021380777 | 1 z (complex128)
crot 110 107 | 1.028037383 | -2.727272727 | 0.017817314 | 1 ¢ (complex64)
zaxpby 107 115 | 0.930434783 | 7.476635514 | 0.017331387 | 1 z (complex128)
caxpby 101 98 | 1.030612245 | -2.97029703 | 0.016359534 | 1 ¢ (complex64)
daxpby 74 70 | 1.057142857 | -5.405405405 | 0.011986193 | 1 d (float64)
saxpby 70 67 1.044776119 | -4.285714286 | 0.011338291 | 1 s (float32)
idamin 60 45 | 1.333333333 -25 | 0.009718535 | 1

zaxpyc 53 54 | 0.981481481 | 1.886792453 | 0.008584706 | 1 z (complex128)

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release

Page 20 of 35

%) SYCLOPS

caxpyc 49 55 | 0.890909091 | 12.24489796 | 0.007936804 ¢ (complex64)
isamin 46 47 | 0.978723404 | 2.173913043 | 0.007450877

izamin 45 44 | 1.022727273 | -2.222222222 | 0.007288901

icamin 44 43 | 1.023255814 | -2.272727273 | 0.007126926

samin 44 40 1.1 | -9.090909091 | 0.007126926 s (float32)
scsum 44 42 | 1.047619048 | -4.545454545 | 0.007126926 s (float32)
crotg 43 40 1.075 | -6.976744186 | 0.00696495 ¢ (complex64)
damin 43 39 | 1.102564103 | -9.302325581 0.00696495 d (float64)
dsum 43 41 | 1.048780488 | -4.651162791 | 0.00696495 d (float64)
dzsum 43 42 | 1.023809524 | -2.325581395 0.00696495 d (float64)
ssum 43 42 | 1.023809524 | -2.325581395 | 0.00696495 s (float32)
drotmg 42 36 | 1.166666667 | -14.28571429 | 0.006802975 d (float64)
srotmg 41 39 | 1.051282051 | -4.87804878 | 0.006640999 s (float32)
zscal 41 50 0.82 | 21.95121951 | 0.006640999 z (complex128)
cscal 40 45 | 0.888888889 12.5 | 0.006479023 ¢ (complex64)
dzamax 40 42 | 0.952380952 5 | 0.006479023 d (float64)
zrotg 40 41 | 0.975609756 2.5 | 0.006479023 z (complex128)
dzamin 39 42 | 0.928571429 | 7.692307692 | 0.006317048 d (float64)
scamax 37 44 | 0.840909091 | 18.91891892 | 0.005993097 s (float32)
scamin 37 40 0.925 | 8.108108108 | 0.005993097 s (float32)
potrf 22 21 | 1.047619048 | -4.545454545 | 0.003563463

axpby 16 17 | 0.941176471 6.25 | 0.002591609

amax 15 5 3 | -66.66666667 | 0.002429634

dsdot 14 4 3.5 | -71.42857143 | 0.002267658 d (float64)
sscal 5 16 0.3125 220 | 0.000809878 s (float32)
amin 4 4 1 0 | 0.000647902

axpy 4 5 0.8 25 | 0.000647902

dgemv 4 15 | 0.266666667 275 | 0.000647902 d (float64)
dnrm2 4 4 1 0 | 0.000647902 d (float64)
dscal 4 16 0.25 300 | 0.000647902 d (float64)
ismax 4 14 | 0.285714286 250 | 0.000647902

rot 4 5 0.8 25 | 0.000647902

swap 4 5 0.8 25 | 0.000647902 s (float32)
ismin 3 3 1 0 | 0.000485927

max 3 16 0.1875 | 433.3333333 | 0.000485927

min 3 4 0.75 | 33.33333333 | 0.000485927

sgemv 3 3 1 0 | 0.000485927 s (float32)
zdotu 3 4 0.75 | 33.33333333 | 0.000485927 z (complex128)

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release

Page 21 of 35

%) SYCLOPS

Table 2. OpenBLAS unit tests execution times

Table 2. column descriptions:

1. Test
e Name of the benchmarked kernel or operation (e.g., cgemm, dgemv).
e Used as the row identifier.

2. Scalar
e Baseline runtime of the kernel in milliseconds when compiled/executed without vectorization.
e Unit: ms.
3. Vector
¢ Runtime of the same kernel in milliseconds using the vectorized implementation.
e Unit: ms.
4. Speedup

e How many times faster the vector version is versus scalar.
e Formula: Speedup x = Scalar ms / Vector ms.
e Interpretation: >1.0 = vector is faster; <1.0 = regression.

5. Delta Time
e Percent change in runtime from scalar to vector.
e Formula: DeltaTime pct = ((Vector ms - Scalar ms) / Scalar ms) x 100.
e Interpretation: negative = improvement (time decreased); positive = slower.
6. Share
e The kernel's share of the total scalar runtime, showing its weight in the overall workload.
e Formula: ShareTotalScalar pct = (Scalar ms / & Scalar ms over all rows) x 100.

e Interpretation: higher values indicate greater impact on end-to-end time.

e BLAS-level categorization inferred from the operation name:
o Level-1 (vector ops),
o Level-2 (matrix-vector),
o Level-3 (matrix-matrix).

e Helps group performance characteristics.

8. Datatype
e Numeric type inferred from the test name prefix:
o s (float32),
o d (float64),
o ¢ (complex64),
o z(complex128).
e Useful for spotting precision- or type-specific trends.

Table 2 shows that not all tests benefit strongly from the vector extension; the aggregated speedup across
all tests is 1.6%, below the 2x target. This is expected because the reported times include setup and test-
selection overheads that make little use of vector instructions. In addition, the unit tests are written to run
as fast as possible and therefore use very small inputs. As seen in the simulation study, larger inputs tend
to increase speedup, and the same should hold for these tests.

Timing was recorded in milliseconds using getCurrentTime. On the 40 MHz emulation platform, 1 ms

=~ 40,000 cycles, which is a coarse resolution for short test cases and may distort measurements of small
runtimes. A cycle counter or higher-resolution timer would provide more accurate results.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 22 of 35

%) SYCLOPS

Overall, the 1.6x speedup on the OpenBLAS unit tests indicates that the library does make substantive
use of the VPU and should yield gains in realistic workloads. However, these unit tests are not designed
to explore the VPU’s performance limits, so they do not by themselves establish its practical ceiling.

Kernel Speedup (Scalar / Vector)
3.5}

fEané‘}mWEEEmm] Y CCcCEOEEEEO0GmsOEXCE >SS
SEESEES ,_oo:uEgEoomuomEEQEEQEE"LxégﬁEEEDOEBDDEEUUEOEgE“QmUmEggE&ELgE EEO
U“’Mﬂ'mu‘JEEECﬁ:’u SO DK}”‘E% X xmrutumuufvcmmoonwmummmaxm ago
Sl ek s %
S ke 85

kernel

Figure 5 - Kernel-level Speedup (Scalar + Vector), overview of Tab. 2 results.

2.4.3 Dot product emulation benchmark

The benefits of the vectorization become apparent for the problems with larger datasets. To evaluate
behaviour of the VPU on the large problem, we prepared simple dot product test.

The experiments were run on the Linux emulation platform described in this document. The tests were
compiled as a Linux user space applications and they were executed from console. Each test was
responsible for measuring its own execution time, which was reported at the end of the test.

The test runs three implementations of the dot product written in the combination of C code and RISCV
assembly. The C code handles the data preparation, time measurement and printing the results. The
scalar version of the dot product is also implemented in C. Both vectorized implementation of dot product
are written in the assembly and linked with main C function in the linker phase. This is different from the
simulation tests where all functions were written in C and vectorized part were introduced by the inline
assembly.

The C code generates two random vectors of the length 512000 elements. Each element is of float type.
The dot vector function is called inside for loop which ensures that every operation is repeated 1000 times.
The number of clock cycles necessary to compute all iterations are measured by calling c1ock () function.
The selected time measurement method relies on the Linux OS and its handling of time. It is not as precise
as the clock cycle measurement performed in the simulation environment. Therefore, the experiments
were run on the large amount of data. Moreover, the obtained data are used to compute speed up between
different implementation of the same function. Since all variants were measured by exact same technique
on the same emulation, the conclusion of speed ups remains valid, even if there are systematic error in
the measurements. The clock cycle values from this benchmark should not be compared with the clock
cycles obtained from the different benchmarks.

The vectorized implementation relies on the assumption that the order of the summation can be changed.
Therefore, instead of adding results of the vector multiplication in one floating point register, we add the

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 23 of 35

%) SYCLOPS

results in the vector register and the final result is computed by the reduction after both input vectors are
processed. The LMUL setting allows the VPU to group several vector registers into one. The grouping of
registers does not increase number of the operation computed in one clock cycle, but it prolongs each
vector instruction.

The scalar implementation finished in 533 197 968 clock cycles. The Vector variant with LMUL equals one
computed result in 99 020 236 clock cycles which indicates 5.3x speed up. Such speed up proves that
VPU is fully utilized during the dot product computation. The vector registers are 128bit wide which means
that they can execute operation on 4 elements simultaneously. Moreover, number of iterations of the
computation look is reduce four times, which means that the overhead of the computation loop is also

reduced.

The vector tests for LMULS8 provides further speed up. Increasing the LMUL causes further reduction of
number of iterations of the computation loop eight times. However, for every vector instruction, the VPU
runs small loop in hardware to work on all vector registers. The observed speed up point to the effective
design of the VPU sequencer, which generates sequences of micro-operation.

Test Run Clock Cycles Speedup vs Scalar
Vector result (LMULS) 62 150 645 8.59677419354838
Vector result (LMUL1) 99 020 236 5.38383838383838
Scalar result 533 197 968 1

Table 3. Dot-Product Macro Benchmark: Clock Cycles and Speedup

On the measured dot product, the VPU obtained speed up of 8.58x. This proves that the VPU meets the
KPI targeted in the SYCLOPS project.

1eg Dot-Product Macro Benchmark (Cycles)

Scalar Vector LMUL1 Vector LMULS8

Figure 6. Dot-Product Macro Benchmark (Clock Cycles)

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 24 of 35

v SYCLOPS

Dot-Product Speedup vs Scalar

=]
T

Speedup (x)
ey

Scalar Vector LMUL1 Vector LMUL8

Figure 7. Dot-Product Speedup vs Scalar

2.5 Summary

The VPU experiments indicate that, with appropriate software, the platform meets the project’'s KPI. These
measurements are an initial evaluation; more precise and robust benchmarking is planned as the platform
matures in the final phase of SYCLOPS. All tests used single-precision floats, so repeating the

experiments with other data types will be needed for a fuller assessment. Broader testing and performance
evaluation will form part of the future work to raise the prototype VPU’s TRL.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 25 of 35

%) SYCLOPS

3.SYCLARA Open Source RISC-V Platform

In parallel with the CSIP RISC-V platform, EUR worked on developing an open-source RISC-V vector
extension platform called SYCLARA. SYCLARA is an end-to-end, hardware—software platform that can
be used as a testbed to evaluate SYCL and RISC-V implementations together. In particular, we built upon
the recent integration of the CVA6 RISC-V core [1] with ARA2 RVV accelerator [2] and extended it by
adding Ethernet capability and enabling Linux boot from an SD card to bring up an RVV accelerator on
the VCU118 platform deployed as a part of EMDC v2.0 at EUR.

nm

¢ > Axi4
DDR4 SPI
‘ 1Gb Ethernet MIG SD Card UART

Figure 8. SYCLARA RISC-V platform

3.1 SYCLARA Open Source RISC-V Platform

Figure 8 shows a high-level overview of the architecture of the SoC we have adapted and brought up. It
is based on the Cheshire SoC developed by the PULP platform and integrates CVA6, an open- source,
high performance RISC-V processor core that implements the RV64GC ISA, with ARA, an open-source
implementation of the RVV. The first integration of ARA with CVA6 was not capable of running Linux
applications because ARA lacks an MMU. To overcome this limitation, we adopted a patched version of
ARA2 and CVA6 where the MMU was shared between CVA6 and ARA. We brought up this integration on
VCU118 by further adapting the DDR4 memory controller and using an SD card to hold the Linux image.

In order to offload SYCL kernels to our hardware platform, we rely on DPC++ and the recently open-
sourced OCK. In particular, we used the OCK remote HAL, which provides a server and an OpenCL client
that can be run on any standard Linux installation, and use socket connections to communicate with each
other. This HAL relies on the accelerator being equipped with an Ethernet interface. Thus, we integrated
an Ethernet module into the SoC to enable interaction with CVA6 and ARA from a SYCL host. In a study
by Chaogun Liang et al.!, Gigabit Ethernet was implemented and integrated into the Cheshire SoC and
tested on Genesys2 and VCU118. However, they used an external Ethernet adapter with an Ethernet
PHY and an RGMII interface. In contrast, we used the Xilinx 1G/2.5G BASE-X PCS/PMA or SGMII core,
which converts the GMII interface to SGMII, the interface supported by the Ethernet PHY chip on the
VCU118. For the MAC layer, we used an existing MAC 2. To overcome the clock domain crossing between
the AXI interconnect and the Ethernet IP, a FIFO was used to bridge the AXI data. The Ethernet driver
was adapted from the lowRISC Ethernet driver. We installed the driver and its dependencies on Linux
using Buildroot, incorporating patch files for the CVA6-SDK and enable SSH support.

We cross-compiled the HAL server for execution on CVA6. We compiled the HAL client to run on a local
x86-64 machine. The default HAL client setup (targeting RV64GC) does not generate any vector
instructions. Thus, we configured the HAL client manually by enabling the vector extension in the HAL

1 Chaoqun Liang, Alessandro Ottaviano, Thomas Benz, Mattia Sinigaglia, Luca Benini, Angelo Garofalo, and
Davide Rossi. 2024. A Gigabit, DMA-enhanced Open-Source Ethernet Controller for Mixed-Criticality Systems. In
Proceedings of the 21st ACM International Conference on Computing Frontiers: Workshops and Special Sessions.
55-58

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 26 of 35

%) SYCLOPS

device during compilation. Additionally, the vectorization factor can be adjusted using the environment
variable CA_RISCV_VF. This variable acts as a multiplier for vectorization levels, allowing control over
the degree of vectorization.

3.2 Evaluation

Having described the SYCLARA hardware—software stack, in this section, we present our experimental
evaluation. The SoC has been implemented on the VCU118 evaluation board, which features a Xilinx
Virtex UltraScale+ FPGA. CVA6 and ARA were clocked to run at 50 MHz. A higher clock rate was tested,
but we encountered timing violations in CVA6 and ARA. The ARA configuration includes 2 lanes, and for
the experiments reported here, we set the vector length (VLEN) to 2048. Table below presents the
implementation results for the SoC, CVAG6, ARA and Ethernet, showcasing resource usage such as LUTS,
BRAMSs, and DSPs.

Resource usage | LUT | BRAM | DSP

SOC 318884 154 132
CVAG6 47114 60 27

ARA 129512 32 102
Ethernet 1652 10 0

Table 4. SYCLARA Implementation results

To evaluate the performance improvement of RVV compared to non-RVV, we tested two SYCL kernels:
1D Convolution (conv), where we convolve two arrays with 4k entries, and matrix multiplication (matmul)
of (150, 300) x (300, 600) matrices, as shown in the table below. We executed the two kernels on CVA6
both in scalar mode and vector using ARA. Clearly, these results demonstrate that SYCL compiler and
runtime toolchains are capable of exploiting RISC-V vector accelerators to improve performance, as the
1D convolution execution time improves up to 6.27x%, and matrix multiplication improves up to 6x. However,
increasing the vectorization factor (CA_RISCV_VF) does not have a uniform impact across all
applications. For instance, conv achieves the best performance with a VF of 16, but matmul does not
improve beyond VF of 8.

Scalar VF=4 VF=8 VF=16
Conv | Matmul | Conv | Matmul | Conv | Matmul | Conv | Matmul
int32 26775 | 139909 19276 | 40008 10918 | 23351 6322 145803
float 28975 | 141210 21542 | 44683 11796 | 25508 6897 145619
double | 47499 | 187428 22943 | 51325 12881 | 29528 7571 191197

Table 4. SYCLARA evaluation results

3.3 Summary

In this work, we provided an overview of our SYCLARA platform that builds on OCK to offload SYCL
computations on the ARA2 RVV accelerator integrated with the CVA6 RISC-V CPU. Using SYCLARA, we
presented a preliminary evaluation of a few kernels to demonstrate that SYCL compiler toolchains
developed in SYCLOPS can exploit RVV to improve performance on real RISC-V hardware. Given the
lack of RVV implementations, we believe that SYCLARA provides a valuable framework for furthering
research on open, standards-based hardware acceleration of analytics and Al.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 27 of 35

&) SYCLOPS

4. CXL-enabled EMDC Testbed

While sections 2 and 3 described the work done in the context of Task 3.2, this section describes the work
done in the context of “Task 3.3: EMDC Assembly”. HIRO has developed a CXL-enabled EMDC testbed
in SYCLOPS project. Figure 9 shows the hardware architecture of the EMDC, and Figure 10 is a
preliminary 3D rendering of a possible module arrangement showing key components, starting with (1)
multiple COM-HPC module that provides the central compute foundation. It is interconnected with (2) an
Ethernet switch and (3) a PCle switch to enable high-bandwidth connectivity and data routing. Power
conversion for 12V only modules is handled by (4) a 48V to 12V converter, allowing low power modules
to integrate. Compute acceleration or processing flexibility is achieved through (5) PIC64-HPSC or Nvidia
Orin modules. For networking and centralized management interfaces, the design incorporates (6) OCP-
NIC 3.0 and (7) OCP-BMC DC-SCM 2.0 standard modules. Storage requirements are met with (8) EDSFF
E1.S SSDs, while CXL memory expansion is supported by (9) EDSFF E3.S CXL memory modules.

P i i| Compute | i:: | 10/25GbE
PCle Voo PCle D * .
Siitch - (NSt | L Module () [N SREEEERES

é (144 lanes forext.| i i [(144 lanes for int. | | ‘ BMC
communication) | ! i | communication) | :

x16 PCle || x8 PCle |- x8 PCle | [x16 PCle | x16 PCle BMC || 4x25GbE|[4x25GbE
Uplink MCIO #1 MCIO #7 | | Downlink | | OCP NIC | tocppe-sem)’| uplink || downlink

(*) Supported compute modules: COM-HPC Server Type E, Jetson AGX

----- exchangeable module ™ “— interconnect by cable

Figure 9: Overview of the EMDC architecture, based on custom form factors for latter adoption to
established form factors like COM-HPC, COM Express, Orin AGX.

Figure 10: Preliminary 3D-rendering of the EMDC platform.

4.1 PCle CXL Switch Development

The PCle/CXL switch is a cornerstone of the project providing the high-bandwidth fabric required to
interconnect heterogeneous compute, storage, and accelerator resources. Its role is to replace rigid,
monolithic server architectures with a composable infrastructure where modules can be flexibly pooled,
reassigned, and orchestrated according to workload demand.

While traditional PCle deployments have been limited to host-to-device topologies, the rise of large-scale
data fabrics and Al workloads requires far greater flexibility. The evolution to PCle Gen6 and Compute

Express Link (CXL) 3.0 represents a decisive step. PCle Gen6 doubles the raw lane speed to 64 GT/s,
Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 28 of 35

%) SYCLOPS

delivering up to 128 GB/s per x16 slot in one direction and ~256 GB/s bidirectional throughput, a
performance class aligned with 800 Gb Ethernet and state-of-the-art accelerators. This is achieved not by
merely pushing clock speeds, but by adopting PAM-4 modulation, forward-error correction (FEC), and a
fixed 256-byte FLIT framing model. These innovations keep error rates under control at multi-tens of
gigahertz signaling, while preserving software transparency: the same drivers that worked on PCle Gen3
continue to function unmodified.

CXL builds on the PCle physical layer, but extends it with cache-coherent protocols. In addition to CXL.io
for I/O compatibility, CXL.cache and CXL.mem allow hosts and accelerators to share memory directly,
eliminating the latency and complexity of software-based emulation layers. This makes it possible to build
memory pools accessible across multiple nodes, a key enabler for disaggregated infrastructures.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 29 of 35

&) SYCLOPS

4.1.1 Architecture and Implementation

The EMDC integrates switches from the Broadcom PEX90000 family, currently the most advanced PCle
Gen6 silicon available and the first with roadmap support for CXL 3.0. Devices like the PEX90144 offer
up to 144 lanes, sufficient to tie together CPU modules, GPU accelerators, FPGA boards, NVMe SSDs,
and network cards within a single composable chassis. Connectivity is realized through MCIO cabling,
which supports PCle Gen6’s signal integrity requirements while remaining mechanically flexible. An x8
MCIO link can be split into two x4s for SSDs, or combined into an x16 link for high-throughput accelerators.
The switch supports partitioning and multi-host operation, allowing independent root complexes to coexist
while still sharing selected resources.

Figure 11 shows the hardware architecture of the PCle switch module that enable high speed data transfer
and module interconnectivity between CPU nodes and devices. Figure 12 shows the preliminary 3D
rendering of the PCle switch.

MCIO X8 MCI0 X8 § ‘ ARCE
H : 12VIN
MCIO X8 MCIOx8 ARCS ;

MCIO X8 MCIO %8

MCIO x8 MCIO x8

MNG

MCIO x8 MCIO x8

STM32
BMC

MCIO X8 MCIOX8 PEX00144

4 3 12C swich
MCIO X8
x

Figure 12: Block Diagram of the PCle/CXL switch board.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 30 of 35

%) SYCLOPS

The project’s PCI Express (PCle) evaluation platform is built around Broadcom’s PEX 90000 switch family,
one of the earliest silicon implementations to natively support the full PCle 6.0 specification, including 64
GT/s data rates, FLIT-mode packetization, and PAM-4 signaling. By standardizing on this switch family,
every hardware substrate developed in the project, both the Embedded Micro Data Center (EMDC) sleds
and the embedded High-Performance Server (eHPS) blades, shares an identical, forward-compatible
PCle backbone.

4.1.2 Prototyping and Validation

Broadcom PCle Switch

Intel NIC

Figure 13: Testbed photos

Prior to embedding the switches on production boards, a multi-stage testbed was assembled to validate
the switch architecture before embedding into production EMDC sleds as shown in Figure 13. The setup
combines Host Interface Boards (HIBs) that connect a server root complex to the switch, and Rapid
Development Kits (RDKs) that expose downstream ports for GPUs, FPGAs, and NVMe devices as shown
in Figure 14. In more advanced topologies shown in Figure 13, three PEX90144 switches are
interconnected, enabling multi-host stress tests and exploration of complex partitioning scenarios.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 31 of 35

%) SYCLOPS

Peripheral 1 Peripheral 2
eq. eq.
Accelerator or Accelerator or
Memory Memory
PCle x16 PCle x16
HIB
Mainboard
PCle x16
PCle x16
CPU
CFIO PCle Switch Geng
Atflas 3
CRIO PEX90144
PCle x16
PCle x16 J PCle x16

Figurel4: PCle testbed with basic functionality

HIB 1

Mainboard 1
FCle x16
PCle x16
(e cru
GPIO. PCle Switch Genf
Aflas 3
Sl PEX90144 .
e FCle x16 Peripheral 2
PCle x16 PCle x16
RDK eg

Accelerator or
Memory

PCle x16
PCle Switch Gen6
Alas 3
PEX90144 Peripheral 1

PCle x16
PCle x16
g
Accelerator or
Memory
HIB 2
Mainboard 2 PCle x16
PCle x16
cPU
CcPI0 PCle Swilch Gent
Affas 3
CPIo PEX90144
PCle x16
PCle x16 PCle x16

Figure 15: Multi-host PCle testbed with HIB and RDK for full functionality

Validation efforts confirmed reliable 64 GT/s signaling with PAM-4, proper operation of FEC/CRC retry
mechanisms, and stable link margining across high-loss channels. Host-to-host NTB communication was
successfully tested within Linux, while early experiments with CXL decoders and ACPI table integration
are underway. These steps ensure that when full CXL 3.0 support becomes available in silicon, the EMDC
fabric will be ready to adopt it.

Based on the successful validation effort, we have already started the manufacturing of the actual PCB
with the switch. We expect the actual hardware to be ready for bring up and testing by the end of October.
We plan to test the hardware as follows. The validation of the PCle/CXL switch module is designed to
ensure both the physical performance of Gen6 signaling and the functional capabilities required for the
EMDC fabric. Testing begins at the physical layer, where each port is powered and trained to 64 GT/s.
Signal integrity is confirmed through on-die eye-diagram monitoring and PRBS stress patterns, while
live lane-margining commands verify that all three PAM-4 “eyes” remain open under load. Forward-error

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 32 of 35

%) SYCLOPS

correction counters and CRC retries are observed during induced noise conditions to prove the robustness
of the FLIT-mode encoding.

Once physical stability is secured, the switch is exercised in managed firmware mode. Using
Broadcom’s SDK, we access detailed packet analyzers and performance counters to validate FEC
efficiency, port bifurcation, and Dynamic Port Reconfiguration. A key step is the demonstration of
flexible MCIO connectivity, where x8 links can be bifurcated into dual x4s for EDSFF storage or
combined into full x16 paths for accelerators.

Throughput and latency are characterized with mixed device classes. Standard NVMe drives are
benchmarked with fio and SPDK, while GPUs and FPGAs validate peer-to-peer transfers through the
switch. In Gen6é mode the target envelope is =121 GB/s one-way on x16 ports and up to =256 GB/s
bidirectional, with host-to-device and device-to-device paths both measured. Latency overhead is
expected in the tens of nanoseconds per hop, well within HPC and Al accelerator requirements.

Beyond raw bandwidth, the switch enables multi-host partitioning and Non-Transparent Bridging (NTB).
Partitioning tests create multiple isolated root complexes with dedicated endpoint visibility, confirmed by
configuration-space scans and controlled failover. NTB is validated by mapping memory windows and
doorbells between two hosts, exposing the link as a virtual Ethernet device in Linux. These host-to-host
transfers are expected to deliver tens of GB/s at microsecond-scale latency, demonstrating that the switch
can serve as a low-latency inter-CPU fabric.

Finally, using both the testbed and the manufactured switch hardware, we plan to conduct integration tests
that demonstrate the potential of PCle v6.0 in accelerating SYCLOPS use cases.

4.2 CXL-enabled GPU server

The goal of our work on CXL-enabled PCle switching is to research the next generating switching
technology for our EMDC. Due to the low-level nature of this work, and the fact that while PCle Gen6
switches are shipping, CXL 3.0 support is still limited in silicon and ecosystem software, the work in this
task is not meant to be directly integrated with higher-level software.

However, there are already CXL 2.0 solutions available in the market, and the Linux kernel already
provides a CXL subsystem to integrate such solutions. In order to provide SYCLOPS partners the ability
to work on current CXL solutions, we also developed a stand-alone CXL server using COTS components
in collaboration with Micron and Supermicro. The server is based on the Supermicro SSG-121E-NE3X12R
platform, which is a dual-CPU server with 128 cores and 256GB of DRAM. The system incorporates a
Micron CXL 128G DDR4 PCle5 E3.S CXL module. This CXL device registers a physical size of 128 GB.
The server is also equipped with a L40S GPU, making it possible for SYCLOPS partners to execute their
cross-architecture application on both CPU and GPU, and on local DRAM and CXL memory, and
investigate tradeoffs.

We worked together with Micron in configuring the server to get CXL memory recognized and supported
for use by applications. The Micron device includes a mailbox and, crucially, operates in system-ram mode
by default, which allows it to be used directly via numactl. In the dual-CPU environment, the server
presents three NUMA nodes: nodes 0 and 1 correspond to the two CPUs, while the CXL device is mapped
as NUMA node 2. The total memory capacity detected by the OS is 257,315 MB, with Node 0 having
63,853 MB, Node 1 having 62,390 MB, and Node 2 (CXL) initially reporting 131,072 MB.

A critical difficulty encountered during the initial configuration was the inability to reconfigure the CXL
memory to work in devdax mode. The command sudo daxctl reconfigure-device --mode=devdax
dax0.0 --force failed, reporting "Device or resource busy," thereby making it impossible to run
benchmarks specifically designed for DAX mode. Furthermore, this unsuccessful reconfiguration attempt
resulted in unexpected behaviour, where a portion of the memory blocks was put offline, causing the
reported size of NUMA node 2 to drop from 131,072 MB to 94,208 MB. Another infrastructure issue
involved the toolkit provided by Micron; the latest versions of mxc1i did not return any output or function

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 33 of 35

%) SYCLOPS

at all, while the older version available in the cx1-reskit repository had limited functionality, only allowing
connection to the module without the ability to pass commands or acquire logs. We worked with Micron
on solving these issues to get CXL memory operational.

We also did preliminary performance testing that revealed varied results across different benchmarks. The
Memory Latency Checker (MLC) showed mixed findings; latency between CPU node 0 and the CXL
device (node 2) was surprisingly low, almost matching the latency between the two CPU nodes (0 and 1).
However, the latency between CPU node 1 and CXL node 2 was significantly higher, recorded at almost
3.5 times longer than typical inter-CPU communication. The pointer chasing benchmark, Multichase,
indicated that CXL performance was only slightly slower than DRAM (about 2 nanoseconds difference),
confirming that the CXL memory was functional. In stark contrast, the STREAM benchmark results
demonstrated that CXL memory exhibited approximately 10 times less memory bandwidth compared to
DRAM, and average running times were 15 times longer for CXL.

The CXL server has been installed at the HIRO datacentre in Budapest, and we have made it available to
SYCLOPS consortium members for research and development activities.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 34 of 35

%) SYCLOPS

5. Conclusion

This deliverable concludes the work done in "Task 3.2: RISC-V reference platform" and "Task 3.3: EMDC
assembly” of WP3 in the SYCOPS project, and documents the successful deployment and initial
evaluation of the EMDC v2.0 infrastructure. Experiments on the proprietary CSIP Vector Processing Unit
(VPU) confirmed that the platform meets the project’'s Key Performance Indicators (KPIs) by
demonstrating significant speedups on vector and matrix operations. In parallel, using the SYCLARA
open-source platform, we demonstrated that the SYCL compiler toolchains developed in WP4 of the
SYCLOPS project are capable of leveraging RVV technology to enhance performance on real RISC-V
hardware.

The infrastructure development focused on establishing a future-proof backbone through the PCle/CXL
switch, which is critical for constructing composable infrastructures. This foundational work ensures the
EMDC fabric is prepared for the maturation of CXL, which will unlock capabilities such as true memory
disaggregation, coherent accelerators, and dynamic orchestration across fabrics. This strategic
development positions the HIRO EMDC at the forefront of the transition between current PCle ecosystems
and future coherent CXL datacenters.

In the final phase of the project, we are working on integrating the software developed in SYCLOPS for
each use case, deploying them on the hardware described in this deliverable, performing end-to-end
performance analysis, and demonstrating concrete improvements bought about by the SYCLOPS
hardware—software as a whole to each application vertical.

Copyright © 2023 SYCLOPS | Deliverable 3.2 — EMDC v2.0 with RVV accelerator release Page 35 of 35

