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Executive Summary 

This deliverable documents the progress made in the SYCLOPS project's infrastructure layer, specifically 

focusing on "Task 3.2: RISC-V reference platform" and "Task 3.3: EMDC assembly". The primary objective 

of these tasks was to deploy EMDC v2.0, a hardware testbed designed to support the evaluation of 

SYCLOPS use cases using software developed in the platform and libraries layers. This has been 

achieved by the deployment of a new hardware testbed contains three key components: (i) a proprietary 

RISC-V platform from CSIP featuring vector extensions, (ii) an open-source RISC-V platform known as 

SYCLARA developed within SYCLOPS, and (iii) a CXL-enabled EMDC testbed.  

On the RISC-V side, significant work was completed on both the proprietary and open-source RISC-V 

platforms. The CSIP Vector-enabled RISC-V Platform utilizes the Codasip A730 core, a 64-bit in-order 

dual-issue processor, integrated with a Vector Processing Unit (VPU) that fully conforms to version 1.0 of 

the RISC-V "V" Vector Extension specification. This proprietary platform was deployed on the AMD 

VCU118 FPGA Evaluation Kit. Initial simulation results confirmed performance gains, with speedups 

ranging up to 9×. Concurrently, the SYCLARA open-source platform was developed by EUR, integrating 

the CVA6 RISC-V core with the ARA2 RVV accelerator and incorporating an Ethernet module to enable 

interaction with a SYCL host. Preliminary evaluation using SYCL kernels on SYCLARA showed impressive 

performance improvements, reaching speedups up to 6.27× for 1D convolution and up to 6× for matrix 

multiplication. Through these results, we have exceeded the target KPI of 2× speedup we set to achieve 

with RVV. 

On the EMDC side, we have deployed a CXL-enabled EMDC Testbed that integrates switches from the 

Broadcom PEX90000 family, which supports PCIe Gen6 (64 GT/s data rates) and has roadmap support 

for CXL 3.0. Prototyping and validation efforts confirmed reliable 64 GT/s signaling with PAM-4, ensuring 

the fabric is ready to adopt CXL 3.0 when the ecosystem matures. Additionally, a stand-alone CXL 2.0 

server was established in collaboration with Supermicro and Micron to allow SYCLOPS partners to 

investigate performance tradeoffs between local DRAM and CXL memory.  
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1. Introduction 

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer, 

(ii) platform layer, and (iii) application libraries and tools layer. 

 

Figure 1. SYCLOPS architecture 

1. Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and 

provides heterogeneous hardware with a wide range of accelerators from several vendors. 

2. Platform layer: The platform layer, provides the software required to compile, execute, and 

interpret SYCL applications over processors in the infrastructure layer.  

3. Application libraries and tools layer: The libraries layer enables API-based programming by 

providing pre-designed, tuned libraries for various deep learning methods for the PointNet 

autonomous systems use case (SYCL-DNN), mathematical operators for scalable HEP analysis 

(SYCL-ROOT), and data parallel algorithms for scalable genomic analysis (SYCL-GAL). This layer 

also contains conversion tools, to facilitate porting of CUDA applications into SYCL, and profiling 

tools to enable the analysis of cross-architecture SYCL applications. 

This deliverable presents the work carried out in the infrastructure layer on EMDC v2.0 as highlighted 

in Figure 1 in the context of “Task 3.2: RISC-V reference platform” and “Task 3.3: EMDC assembly ” 

of WP3 in the SYCLOPS project. The goal of these tasks was to build an RVV-capable, RISC-V 

reference platform and deploy it together with CPU, GPU, and FPGA accelerators from other vendors 

in a hardware testbed that will be used to support evaluation of SYCLOPS use cases using software 

developed in platform and libraries layers. 

At M18, we had developed and deployed v1.0 of the SYCLOPS EMDC which was described in 

deliverable D3.1. At M33, we have developed and deployed v2.0 of the SYCLOPS hardware testbed 

containing three key components: (i) A proprietary RISC-V platform from CSIP with support for vector 

extensions, (ii) an open-source RISC-V platform called SYCLARA we have developed in SYCLOPS, 

and (iii) a CXL-enabled EMDC testbed.  

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level overview of the 

overall SYCLOPS architecture and positions this deliverable with respect to both components in the 
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SYCLOPS stack and WP/tasks in the work plan. Sections 2 and 3 provide an overview of the work done 

on the proprietary CSIP RISC-V core with vector extensions and the open-source SYCLARA RISC-V 

platform in the context of “Task 3.2: RISC-V Reference Platform”. Section 4 provides an overview of the 

work done in CXL-enabled PCIe 6.0 switching for HIRO’s next generation EMDCs in the context of “Task 

3.3: EMDC Assembly”. 
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2. CSIP Vector-enabled RISC-V Platform 

This section describes the RISC-V processor with Vector extension designed by CSIP. The Vector 

extension allows RISC-V processor to us the SIMD parallelism to speed up the SYCL computation kernels. 

First, we describe the RISC-V core itself. The partner CSIP provided the Vector extension for the A730 

application core. A730 is in-order dual issue processor with 9-stage pipeline. Then, we introduce the FPGA 

platform called Hobgoblin. Hobgoblin was developed for the emulation of the Codasip processor cores. It 

provides all peripheral necessary to execute binaries on the A730 as well as ethernet interface used to 

connect with the outside environment. We also briefly describe the Linux operating system used to enable 

OneAPI construction Kit server. The provided Linux distribution enabled the vector instruction to the user 

space applications but does not use them itself. Any Linux binary compiled for the RISC-V with Vector 

extension can be executed on the platform. Finally, we present an evaluation of the platform using several 

benchmarks. 

2.1 Vector-enabled processor core 

2.1.1 Overview of RISC-V core 

The foundation of this RVV integration into EMDC v1 and v2 is the Codasip A730, an advanced, 

customizable RISC-V core. The Codasip A730 is a versatile mid-range 64-bit dual-issue in-order 

application core, well-suited for a broad spectrum of applications due to its significant performance 

improvements over previous generations. Its compliance with the RVA22 RISC-V profile further solidifies 

its position as a robust and standard-compliant foundation for Vector extension. The CSIP’s development 

work in the SYCLOPS project contributes to the larger activity focused on the implementation of the Vector 

extension and its integration in the A730. 

2.1.2 Technical Specifications 

● Architecture: 64-bit in-order dual-issue RISC-V core. 

● ISA: Supports base integer set, RV64I. 

● Microarchitecture: In order, 9 stages, dual issue pipeline. 

● Configurations: Available in single- and multi-core configurations, with a cluster featuring full 

coherency, shared L2 cache, and an interrupt controller compliant with the RISC-V standard. 

● Performance: 2x the performance of previous generations, designed for complex compute tasks 

in power-constrained devices. 

● Customization: Flexible design with options to configure the number of cores (one to four), 

memory protection, branch prediction, cache sizes, and TLBs. 
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Figure 2. High-level overview of the A730 RISC-V core and Vector Processing Unit 

2.1.3 Description of the RVV Extension for A730 

The Vector Processing Unit, representing the RVV accelerator, is designed for full conformance with 

version 1.0 of the RISC-V "V" Vector Extension specification, which is a foundational document for vector 

processing in the RISC-V ecosystem. Section 18.3, specifically titled "V: Vector Extension for Application 

Processors," outlines the stringent requirements for vector units designed for general-purpose computing 

environments. The official reference for this section can be found at: https://lists.riscv.org/g/tech-vector-

ext/attachment/686/0/riscv-v-spec.pdf#page=94. 

The design of the CSIP’s vector unit incorporates several key attributes and design choices that balance 

performance, area and complexity: 

• Memory Access Limitations: The vector unit intentionally does not support access to non-idempotent 

and/or non-cached memory. However, it fully supports misaligned memory access for cached, idem-

potent memory during vector load/store operations. 

• Vector Length (VLEN): For the Codasip A730 processors, the planned VLEN is 128 bits. This length 

is consistently twice the XLEN (eXtension Length) and representing the maximum data size the 

memory subsystem can transfer in a single cycle. 

• Implementation Model: The vector unit is realized as a series of specialized vector execution units 

that are tightly integrated with the scalar processor. 

• Issue Model: The vector unit operates as a single-issue pipeline, meaning it cannot simultaneously 

issue instructions to multiple execution units within the same clock cycle. This design choice prioritizes 

simpler control logic and potentially faster time-to-market over maximizing instruction-level parallelism, 

which is a common trade-off in processor design. 

• Memory Coherence: All memory access for the vector unit is handled by the scalar machine's L1 

cache, ensuring inherent data coherence between the scalar and vector processing elements. 

https://lists.riscv.org/g/tech-vector-ext/attachment/686/0/riscv-v-spec.pdf
https://lists.riscv.org/g/tech-vector-ext/attachment/686/0/riscv-v-spec.pdf
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• Pipeline and Register Management: Instructions and their constituent micro-operations (μOPs) are 

issued and complete in-order, without the use of register renaming. The width of the vector datapaths 

is matched to the VLEN, and the memory interface width also corresponds to VLEN. 

• SIMD Operation: Arithmetic operations within the vector unit (excluding memory access operations) 

function in a simple Single Instruction, Multiple Data (SIMD) manner. This allows all elements within a 

VLEN-sized vector register to be processed in parallel. For a VLEN of 128 bits, this translates to 16 

operations on 8-bit elements, 8 operations on 16-bit elements, 4 operations on 32-bit elements, or 2 

operations on 64-bit elements. 

 

EEW (Effective Element 

Width) 
Description (VLEN = 128) 

8 16 operations of 8-bits each 

16 8 operations of 16-bits each 

32 4 operations of 32-bits each 

64 2 operations of 64-bits each 

 

• No Chaining: The design explicitly avoids chaining, meaning that results are forwarded as a complete 

vector register rather than individual elements. This simplification in forwarding logic may introduce 

stalls if dependent operations require only a subset of elements, representing another design consid-

eration that balances complexity with potential performance gains. 

• LMUL Implementation: The vector register grouping (LMUL) feature is implemented through a se-

quencer that orchestrates the issuance of multiple micro-operations to complete the required architec-

tural instruction. 

• Multi-cycle Operations: The vector sequencer is also responsible for managing vector instructions 

that require multiple cycles to complete, such as vector reduction operations. 

• Vector Register File: The vector register file is equipped with three read ports and a single write port. 

The v0 mask register is shadowed in flip-flops, which eliminates the need for an additional read port 

specifically for v0. 

• Execution Unit Sharing: There is no attempt to share execution units between the scalar and vector 

machines; for instance, the Floating-Point Unit (FPU) is kept separate. 

• Pipelined ALUs: Arithmetic execution units are generally pipelined, allowing them to initiate or com-

plete a new micro-operation every clock cycle, irrespective of the element size. Exceptions to this are 

the divide and square root operations, which are iterative and cannot be pipelined. 

• Byte-Lane Cross-Bar: The implementation assumes that a full byte-lane cross-bar switch can be 

achieved within a single clock cycle. This implies that for a VLEN of 128 bits, each of the sixteen 

destination bytes can arbitrarily select data from any of the sixteen input bytes. 

• Vector Memory Load/Store: These operations are executed as a series of MEM_WIDTH-aligned 

accesses to memory. Single-cycle access is achieved when EMUL=1 and memory addresses are 

word-aligned. If addresses are not aligned, additional MEM_WIDTH-aligned accesses are required. 

• Interrupts and Exceptions: For vector instructions requiring multiple micro-operations, interrupts are 

generally disabled within the architectural instruction. However, a select few very long-running opera-

tions (exceeding 100 cycles) permit interrupts at specific points. Similarly, certain exceptions, such as 

page faults, may be taken during vector load/store instructions, utilizing the vstart mechanism to ena-

ble instruction restart. 



 
 

Copyright  2023 SYCLOPS | Deliverable 3.2 – EMDC v2.0 with RVV accelerator release                               Page 12 of 35 

 

2.2 FPGA Platform 

To be able to emulate the core the FPGA emulation platform is provided. The purpose of the platform is 

to run the core in FPGA fabric and provide all peripherals necessary to run operating system. The ethernet 

was selected to facilitate connection with outside environment.  

 

 

Figure 3. The FPGA Platform High Level Architecture for EMDC v2.0 

 

The Figure 2 shows the block diagram of the FPGA platform. For the EMDC v2.0 release, the FPGA 

platform was strategically upgraded to the AMD VCU118 Evaluation Kit, featuring the Virtex UltraScale+ 

XCVU9P FPGA. This transition was necessitated by the escalating logic and memory capacity 

requirements of the integrated RVV accelerator and the broader EMDC v2.0 architecture. The VCU118 

provides a substantial increase in programmable logic resources, a significantly more robust memory 

subsystem (2.5 GB DDR4 SDRAM), and enhanced high-speed I/O capabilities, all critical for 

accommodating the expanded design complexity, memory-intensive workloads, and high-throughput data 

processing demands of the advanced edge microdatacenter. Key features and specifications of the board 

include: 

• FPGA: Virtex UltraScale+ XCVU9P FPGA    
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• Logic Cells: 2.5 million    

• DSP Slices: 1,248    

• Transceiver Speeds: Up to 40 GB/s    

• Memory: 2.5 GB of DDR4 SDRAM, 4 GB of QSPI flash    

• High-Speed Connectivity: 1000Mbps Ethernet ports  

• Connectivity and On-board I/O: 

o FMC Connectors: FMC, FMC+    

o Pmod Connectors    

• Programming Flexibility: Vivado Design Suite and PetaLinux   

 

Unfortunately, the VCU118 does not have the SD Card slot. As such, the FMC extension board was 

provided by CSIP. This board contains another 1000Mbps ethernet port together with the SD Card 

connector.  

The SDCard from this port is used to boot up the software the FPGA bitstream is programmed. The FPGA 

platform support the secure boot process which allows to run only the cryptographically signed binaries. 

The started binaries may be the final application or the operating system bootloader. 

Unfortunately, unlike the Genesys 2 board used for the EMDC v2.0 release, the VCU118 does not support 

the loading of the bitstream from the SDCard itself. As such, the bitstream must be stored on the QSPI 

flash or programmed into FPGA directly by JTAG programming interface. 

Therefore, platform contains two JTAG chains. The first chain contains the FPGA itself and is used to 

program the bitstream into the FPGA through Vivado tool. The second JTAG chain contains only the A730 

core. The second JTAG chain is used to connect the debugger to the core itself.  

2.3 Operating System 

The software environment supporting the EMDC v2.0 with the RISC-V platform has been prepared to 

ensure a robust and flexible development ecosystem. 

• Linux Distribution: The Poky distribution, a reference embedded Linux distribution, has been 

specifically modified to support the FPGA Platform. 

• Yocto Manifest: The yocto manifest for this modified distribution is publicly available on GitHub, 

promoting transparency, collaboration, and reproducibility of the software environment.    

• System Access: The system offers versatile access methods, including the UART console and 

secure shell (SSH) over Ethernet.    

The final Linux distribution is based on the poky distribution which is further modified to meet all the 

SYCLOPS requirements. 

The first important modification is the enablement of the Vector extension. To enable the use of vector 

instruction in the user space application, vector extension must be enabled in the linux kernel configuration 

file. 

CONFIG_RISCV_ISA_V=y 

CONFIG_RISCV_ISA_V_DEFAULT_ENABLE=y 

CONFIG_RISCV_ISA_V_UCOPY_THRESHOLD=25600000000 
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As can be seen from previous figure, the Vector ISA was enabled, and it use was allowed by default. 

However, the use of vector instruction for the memory copy was allowed only for the prohibitively large 

memory blocks. This configuration was selected to ensure that while the vector instructions and registers 

are handled correctly by the kernel, they are not used for the kernel operation. 

Even if the kernel is configured to support vector extension by default, it will not use vector instruction if 

they are not available in the HW. Therefore, the device tree for the platforms must contain the vector 

support as well. 

To ensure the correct comparison with the previous version of the platform. The rest of the Linux binaries 

were not recompiled with vector support. Therefore, only application that uses the vector instruction will 

be the evaluated user space application downloaded over SSH interface. This is to ensure that the 

measured speed up is cause by the parallelization in the evaluated application instead of more efficient 

operating environment. 

root@hobgoblin-a730:~# openblas_utest_ext 

 

<around 1500 Lines removed> 

 

TEST 1520/1522 csbmv:upper_k_2_inc_b_1_inc_c_1_n_100 [OK]  

TEST 1521/1522 csbmv:upper_k_1_inc_b_1_inc_c_1_n_100 [OK]  
TEST 1522/1522 csbmv:upper_k_0_inc_b_1_inc_c_1_n_100 [OK]  

RESULTS: 1522 tests (1522 ok, 0 failed, 0 skipped) ran in 75662 ms  

root@hobgoblin-a730:~# 

 

For validation that the user space application can access the vector instruction, openblas extended 

regression test binary (openblas_utest_ext) was added into the Linux distribution. When the Linux OS 

boots up, user can execute this binary. If the VPU is working and available, all tests will pass without any 

issues. Otherwise, the error messages will appear. 

The test binary may be executed through console access over UART or over the SSH connection. To run 

the secure shell connection, the platform must be connected to the ethernet. By default, the Linux boot up 

with static IP (10.15.51.61). The Linux distribution contain also dhcp client so it is possible to change the 

network configuration to accept the IP address from the DHCP server. 

To change network setting, the file /etc/network/interfaces on SDCard must be modified. The SDCard 

contains two partitions, one with the bootloader and kernel image. The second partition contain the Linux 

filesystem. This partition is mounted and accessed from the Linux on the FPGA. After the network is 

correctly set up, the board is available through secure shell and as such can be used to run arbitrary SW 

compiled for the RiscV with Vector extension. 

4.1 Integration with oneAPI Construction Kit 

Integration with the oneAPI Construction Kit is a critical aspect of the software environment, enabling 

broader industry adoption and heterogeneous computing paradigms. This integration involved three key 

areas: 

• Platform Preparation: Ensuring the FPGA board is fully prepared to interface with the oneAPI 

construction kit, which includes integrating the RISC-V core with the necessary software environ-

ment. 

• Software Environment Setup: Establishing a complete development toolchain, including compil-

ers and debuggers, that are fully compatible with the RISC-V architecture. This also encompasses 
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the deployment of a rich Linux operating system, which is fully supported by the A730 RISC-V core 

and the RVV Extension. 

• Testing and Validation: Conducting comprehensive testing to verify the compatibility and perfor-

mance of the integrated system. This phase leverages instruction-accurate and cycle-accurate 

models, which are key for early software development and debugging, ensuring the system meets 

its performance and functional targets.   

 

2.4 Experimental Results 

2.4.1 Benchmarking in simulation 

The first analysis of the designed VPU was done in the simulation. We run the VPU core in the simulation 

and executed small kernels for the basic vector and matric operations. 

2.4.1.1 Experimental Setup 

To evaluate the VPU-extended core, we used Codasip’s internal verification environment, coreTB. This 

environment runs RTL simulation of the processor in a selected third-party simulator, automatically 

generates instruction traces from the simulated core, and compares them with traces from a golden model 

(e.g., the SAIL model). 

The benchmark C code was compiled with a standard toolchain, and the resulting binaries were loaded 

into simulated memory within coreTB. The simulation then accesses memory and boots the processor as 

real hardware or an FPGA would. 

2.4.1.2 Benchmark evaluation 

Because simulation is significantly slower than emulation, we did not run a Linux OS. Instead, the 

benchmarks were executed as bare-metal applications. This initial experiment used four vector algorithms 

with different degrees of inherent parallelism. Each algorithm used single-precision floats, so the 

measured VPU processes four elements at a time. The benchmark marks the start and end of each 

function, allowing exact measurement of the number of clock cycles spent in computation from the 

simulation logs. 

2.4.1.3 Benchmark results 

Table 1 summarizes the simulation measurements. Observed speedups range from 1.5× to 5×, depending 

on the algorithm and input size. 

The SYCLOPS KPIs target a 2× speedup. Vector addition and vector multiplication meet this target even 

for the smallest datasets. The matrix-vector product reaches the target for sizes 32×32 and above. The 

vector dot product does not meet the target - in the measured implementation, a scalar unit performs the 

final accumulation after the multiplications, which limits the achievable speedup. 

Overall, when sufficient parallelism is available, the vector extension delivers speedups above 4× in this 

simulation study. 

Operation 
Task 
Size 

Scalar Avg. 
Cycles 

Vector Avg. 
Cycles 

Speedup 
(Scalar/Vector) 

Scalar 
Cycles/Elem 

Vector 
Cycles/Elem 

Vector Addition 64 501 170 2.95 7.83 2.66 

Vector Addition 128 1053 263 4 8.23 2.05 

Vector Addition 512 3891 1002 3.88 7.6 1.96 

Vector Addition 1024 7640 1892 4.04 7.46 1.85 

Vector Multiplication 64 639 164 3.9 9.98 2.56 
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Vector Multiplication 128 1239 261 4.75 9.68 2.04 

Vector Multiplication 512 4625 998 4.63 9.03 1.95 

Vector Multiplication 1024 9538 1890 5.05 9.31 1.85 

Vector Dot Product 64 415 260 1.6 6.48 4.06 

Vector Dot Product 128 792 488 1.62 6.19 3.81 

Vector Dot Product 512 3150 1898 1.66 6.15 3.71 

Vector Dot Product 1024 6209 3701 1.68 6.06 3.61 

Matrix-Vector Product 8x8 958 636 1.51 119.75 79.5 

Matrix-Vector Product 16x16 2963 1493 1.98 185.19 93.31 

Matrix-Vector Product 32x32 11103 3972 2.8 346.97 124.12 

Matrix-Vector Product 64x64 41952 15245 2.75 655.5 238.2 

Table 1. Benchmarking time in clock cycles 

Tab 2. column descriptions: 

1. Operation 

• Name of the computation being benchmarked (e.g., Vector Addition, Vector Dot Product, Matrix-Vector 
Product). Serves as the row label. 

2. Task Size 

• Problem size for the row.  

• For vector ops: the vector length n (e.g., 64, 128, …). 

• For Matrix-Vector Product: the matrix dimension n×n (e.g., 32×32), which produces n output elements. 

3. Scalar Avg. Cycles 

• Average number of clock cycles to complete the operation using the scalar (non-vectorized) implemen-
tation. 

• Unit: cycles.  

• If repeated runs were used, this is the mean across runs. 
 

4. Vector Avg. Cycles 

• Average number of clock cycles to complete the operation using the vectorized implementation.  

• Unit: cycles.  

• Mean across runs if repeated. 
 

5. Speedup (Scalar/Vector) 

• How many times faster the vector version is compared to scalar. 

• Formula: Speedup = (Scalar Avg. Cycles) / (Vector Avg. Cycles) 

• Interpretation: values > 1.0 indicate the vector version is faster; = 1.0 no change; < 1.0 regression. 
 

6. Scalar Cycles/Elem 

• Per-element cost for the scalar implementation. 

• Formula (vector ops): Scalar Avg. Cycles / n 

• Formula (M×V): Scalar Avg. Cycles / n (since an n×n matrix–vector produces n outputs) 

• Interpretation: lower is better; shows efficiency independent of total size. 
 

7. Vector Cycles/Elem 

• Per-element cost for the vector implementation. 

• Formula (vector ops): Vector Avg. Cycles / n 

• Formula (M×V): Vector Avg. Cycles / n 

• Interpretation: lower is better; directly comparable to Scalar Cycles/Elem to see per-element gains. 
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Note: All cycle counts are hardware-clock cycles; convert to time with time = cycles / frequency. 
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Figure 4. Plots based on Table. 1, showing speedup, absolute cycles, and per-element efficiency. 

 

2.4.2 OpenBLAS evaluation 

To ensure the compliance of the RISCV Vector extension Codasip run multiple tests during the 

development of the VPU in the FPGA emulation. While these tests are not benchmark on their own, they 

provide the interesting and important view of the capabilities of the Developed HW.  
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2.4.2.1 Experimental Setup 

The experiments were run on the Linux emulation platform described in this document. The tests were 

compiled as a Linux user space applications and they were executed from console. Each test was 

responsible for measuring its own execution time, which was reported at the end of the test.  

2.4.2.2 Benchmark evaluation 

The openBLAS unit Test are testing a large part of the openBLAS capabilities and as such we used them 

to evaluate the correctness of our VPU prototype together with the extensive verification in the simulation. 

The openBLAS test measures the time needed to execute the given test set. Therefore, it is possible to 

use them as crude benchmarks. We compiled the two version of the openBLAS library. Scalar version 

was compiler for the GENERIC RISCV target and generated test binaries were copied on the file system 

of the emulation platform with suffix _scalar. 

make TARGET=RISCV64_GENERIC CFLAGS="-DTARGET=RISCV64_GENERIC"  

BINARY=64 ARCH=riscv64 NOFORTRAN=1 CC=riscv64-unknown-linux-gnu-gcc  

AR=riscv64-unknown-linux-gnu-ar AS=riscv64-unknown-linux-gnu-as  

LD=riscv64-unknown-linux-gnu-ld FC=riscv64-unknown-linux-gnu-gfortran  

HOSTCC=gcc HOSTFC=gfortran -j32 

The second version was compiled for the RISCV64_ZVL128B target, which is the GENERIC RISCV target 

with Vector extension support. The names of vector binaries were given suffix _vector and copied to 

the same location as their scalar counterparts. 

make TARGET=RISCV64_ZVL128B CFLAGS="-DTARGET=RISCV64_ZVL128B" 

BINARY=64 ARCH=riscv64 NOFORTRAN=1 CC=riscv64-unknown-linux-gnu-gcc 

AR=riscv64-unknown-linux-gnu-ar AS=riscv64-unknown-linux-gnu-as 

LD=riscv64-unknown-linux-gnu-ld FC=riscv64-unknown-linux-gnu-gfortran 

HOSTCC=gcc HOSTFC=gfortran -j32 

  

The openBLAS version v0.3.30 source codes were compiled by the GNU Compiler Collection version 

15.1.0  

The benchmarking is controlled by the script that can be run from command line. This script executes 

each testset in the utest and utest_ext and forwards stdout of the tests into the log file. Every 

command is run two times and only the second time results are reported. This ensures that every test 

binary is available in the filesystem cache and therefore the runtime is not affected by the time needed to 

access SD Card. 

2.4.2.3 Benchmarking results 

Every of the openBLAS tests reports the time spend in the data preparation and the computation itself. 

The following table summarizes the time for the tests run on the FPGA platform. Due to the nature of the 

emulation, the Idefix core was running on 40MHz while the final ASIC is expected to run in the range of 1 

to 1.7 GHz. Therefore, if run on the final product, the tests would run at least 40 times faster.   

Test 
Scalar 

[ms] 

Vector 

[ms] 

Speedup 

[x] 

Delta Time  

 [%] 

Share  

[%] 

BLAS 
Level 

Datatype 

fork 515435 295913 1.741846421 -42.58965728 83.48788504 1   

zgemm 12923 10872 1.188649742 -15.8709278 2.093210469 3 z (complex128) 
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cgemm 11196 7256 1.542998897 -35.19113969 1.813478636 3 c (complex64) 

ztrsv 7989 7598 1.051460911 -4.894229566 1.294022939 2 z (complex128) 

ztrmv 7906 7596 1.040810953 -3.921072603 1.280578966 1 z (complex128) 

zgemmt 7202 5662 1.271988697 -21.38294918 1.166548155 3 z (complex128) 

ctrmv 6482 5680 1.141197183 -12.37272447 1.049925734 1 c (complex64) 

ctrsv 6420 5616 1.143162393 -12.52336449 1.039883248 2 c (complex64) 

cgemmt 6196 4088 1.515655577 -34.02194964 1.003600717 3 c (complex64) 

dgemmt 3662 2867 1.277293338 -21.70944839 0.593154588 3 d (float64) 

sgemmt 3224 2011 1.603182496 -37.62406948 0.522209282 3 s (float32) 

kernel_regress 2790 2298 1.214099217 -17.6344086 0.451911879 1   

zimatcopy 2557 2426 1.053998351 -5.12319124 0.414171568 1 z (complex128) 

cimatcopy 2179 1976 1.102732794 -9.316200092 0.352944797 1 c (complex64) 

zgeadd 2096 2193 0.955768354 4.627862595 0.339500824 1 z (complex128) 

zgemv 2022 1962 1.03058104 -2.96735905 0.32751463 2 z (complex128) 

cgeadd 1833 1651 1.11023622 -9.929078014 0.296901245 1 c (complex64) 

cgemv 1707 1546 1.104139715 -9.431751611 0.276492322 2 c (complex64) 

zomatcopy 1536 1498 1.025367156 -2.473958333 0.248794497 1 z (complex128) 

comatcopy 1309 1250 1.0472 -4.507257448 0.212026039 1 c (complex64) 

dimatcopy 1282 1230 1.042276423 -4.056162246 0.207652698 1 d (float64) 

dgeadd 1168 1085 1.076497696 -7.106164384 0.189187482 1 d (float64) 

simatcopy 1084 1030 1.052427184 -4.981549815 0.175581533 1 s (float32) 

sgeadd 929 864 1.075231481 -6.996770721 0.150475317 1 s (float32) 

zsbmv 880 791 1.112515803 -10.11363636 0.142538514 1 z (complex128) 

csbmv 774 677 1.143279173 -12.53229974 0.125369102 1 c (complex64) 

domatcopy 713 678 1.051622419 -4.908835905 0.115488591 1 d (float64) 

zspmv 704 596 1.181208054 -15.34090909 0.114030811 2 z (complex128) 

cspmv 602 457 1.317286652 -24.08637874 0.097509301 2 c (complex64) 

somatcopy 590 556 1.061151079 -5.762711864 0.095565594 1 s (float32) 

zgbmv 173 168 1.029761905 -2.89017341 0.028021776 2 z (complex128) 

cgbmv 144 139 1.035971223 -3.472222222 0.023324484 2 c (complex64) 

zrot 132 122 1.081967213 -7.575757576 0.021380777 1 z (complex128) 

crot 110 107 1.028037383 -2.727272727 0.017817314 1 c (complex64) 

zaxpby 107 115 0.930434783 7.476635514 0.017331387 1 z (complex128) 

caxpby 101 98 1.030612245 -2.97029703 0.016359534 1 c (complex64) 

daxpby 74 70 1.057142857 -5.405405405 0.011986193 1 d (float64) 

saxpby 70 67 1.044776119 -4.285714286 0.011338291 1 s (float32) 

idamin 60 45 1.333333333 -25 0.009718535 1   

zaxpyc 53 54 0.981481481 1.886792453 0.008584706 1 z (complex128) 
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caxpyc 49 55 0.890909091 12.24489796 0.007936804 1 c (complex64) 

isamin 46 47 0.978723404 2.173913043 0.007450877 1   

izamin 45 44 1.022727273 -2.222222222 0.007288901 1   

icamin 44 43 1.023255814 -2.272727273 0.007126926 1   

samin 44 40 1.1 -9.090909091 0.007126926 1 s (float32) 

scsum 44 42 1.047619048 -4.545454545 0.007126926 1 s (float32) 

crotg 43 40 1.075 -6.976744186 0.00696495 1 c (complex64) 

damin 43 39 1.102564103 -9.302325581 0.00696495 1 d (float64) 

dsum 43 41 1.048780488 -4.651162791 0.00696495 1 d (float64) 

dzsum 43 42 1.023809524 -2.325581395 0.00696495 1 d (float64) 

ssum 43 42 1.023809524 -2.325581395 0.00696495 1 s (float32) 

drotmg 42 36 1.166666667 -14.28571429 0.006802975 1 d (float64) 

srotmg 41 39 1.051282051 -4.87804878 0.006640999 1 s (float32) 

zscal 41 50 0.82 21.95121951 0.006640999 1 z (complex128) 

cscal 40 45 0.888888889 12.5 0.006479023 1 c (complex64) 

dzamax 40 42 0.952380952 5 0.006479023 1 d (float64) 

zrotg 40 41 0.975609756 2.5 0.006479023 1 z (complex128) 

dzamin 39 42 0.928571429 7.692307692 0.006317048 1 d (float64) 

scamax 37 44 0.840909091 18.91891892 0.005993097 1 s (float32) 

scamin 37 40 0.925 8.108108108 0.005993097 1 s (float32) 

potrf 22 21 1.047619048 -4.545454545 0.003563463 1   

axpby 16 17 0.941176471 6.25 0.002591609 1   

amax 15 5 3 -66.66666667 0.002429634 1   

dsdot 14 4 3.5 -71.42857143 0.002267658 1 d (float64) 

sscal 5 16 0.3125 220 0.000809878 1 s (float32) 

amin 4 4 1 0 0.000647902 1   

axpy 4 5 0.8 25 0.000647902 1   

dgemv 4 15 0.266666667 275 0.000647902 2 d (float64) 

dnrm2 4 4 1 0 0.000647902 1 d (float64) 

dscal 4 16 0.25 300 0.000647902 1 d (float64) 

ismax 4 14 0.285714286 250 0.000647902 1   

rot 4 5 0.8 25 0.000647902 1   

swap 4 5 0.8 25 0.000647902 1 s (float32) 

ismin 3 3 1 0 0.000485927 1   

max 3 16 0.1875 433.3333333 0.000485927 1   

min 3 4 0.75 33.33333333 0.000485927 1   

sgemv 3 3 1 0 0.000485927 2 s (float32) 

zdotu 3 4 0.75 33.33333333 0.000485927 1 z (complex128) 
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Table 2. OpenBLAS unit tests execution times 

Table 2. column descriptions: 

1. Test 

• Name of the benchmarked kernel or operation (e.g., cgemm, dgemv).  

• Used as the row identifier. 

2. Scalar 

• Baseline runtime of the kernel in milliseconds when compiled/executed without vectorization. 

• Unit: ms. 

3. Vector 

• Runtime of the same kernel in milliseconds using the vectorized implementation. 

• Unit: ms. 

4. Speedup 

• How many times faster the vector version is versus scalar. 

• Formula: Speedup_x = Scalar_ms / Vector_ms. 

• Interpretation: >1.0 = vector is faster; <1.0 = regression. 

5. Delta Time 

• Percent change in runtime from scalar to vector. 

• Formula: DeltaTime_pct = ((Vector_ms − Scalar_ms) / Scalar_ms) × 100. 

• Interpretation: negative = improvement (time decreased); positive = slower. 

6. Share 

• The kernel’s share of the total scalar runtime, showing its weight in the overall workload. 

• Formula: ShareTotalScalar_pct = (Scalar_ms / Σ Scalar_ms over all rows) × 100. 

• Interpretation: higher values indicate greater impact on end-to-end time. 

 

7. Level 

• BLAS-level categorization inferred from the operation name: 

o Level-1 (vector ops), 

o Level-2 (matrix-vector), 

o Level-3 (matrix-matrix).  

• Helps group performance characteristics. 

 

8. Datatype 

• Numeric type inferred from the test name prefix: 

o s (float32),  

o d (float64),  

o c (complex64), 

o z (complex128). 

•  Useful for spotting precision- or type-specific trends. 

 

Table 2 shows that not all tests benefit strongly from the vector extension; the aggregated speedup across 

all tests is 1.6×, below the 2× target. This is expected because the reported times include setup and test-

selection overheads that make little use of vector instructions. In addition, the unit tests are written to run 

as fast as possible and therefore use very small inputs. As seen in the simulation study, larger inputs tend 

to increase speedup, and the same should hold for these tests. 

Timing was recorded in milliseconds using getCurrentTime. On the 40 MHz emulation platform, 1 ms 

≈ 40,000 cycles, which is a coarse resolution for short test cases and may distort measurements of small 

runtimes. A cycle counter or higher-resolution timer would provide more accurate results. 
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Overall, the 1.6× speedup on the OpenBLAS unit tests indicates that the library does make substantive 

use of the VPU and should yield gains in realistic workloads. However, these unit tests are not designed 

to explore the VPU’s performance limits, so they do not by themselves establish its practical ceiling. 

Figure 5 - Kernel-level Speedup (Scalar ÷ Vector), overview of Tab. 2 results. 

2.4.3 Dot product emulation benchmark 

The benefits of the vectorization become apparent for the problems with larger datasets. To evaluate 

behaviour of the VPU on the large problem, we prepared simple dot product test.  

2.4.3.1 Experimental Setup 

The experiments were run on the Linux emulation platform described in this document. The tests were 

compiled as a Linux user space applications and they were executed from console. Each test was 

responsible for measuring its own execution time, which was reported at the end of the test. 

2.4.3.2 Benchmark evaluation 

The test runs three implementations of the dot product written in the combination of C code and RISCV 

assembly. The C code handles the data preparation, time measurement and printing the results. The 

scalar version of the dot product is also implemented in C. Both vectorized implementation of dot product 

are written in the assembly and linked with main C function in the linker phase. This is different from the 

simulation tests where all functions were written in C and vectorized part were introduced by the inline 

assembly.   

The C code generates two random vectors of the length 512000 elements. Each element is of float type. 

The dot vector function is called inside for loop which ensures that every operation is repeated 1000 times. 

The number of clock cycles necessary to compute all iterations are measured by calling clock() function. 

The selected time measurement method relies on the Linux OS and its handling of time. It is not as precise 

as the clock cycle measurement performed in the simulation environment. Therefore, the experiments 

were run on the large amount of data. Moreover, the obtained data are used to compute speed up between 

different implementation of the same function. Since all variants were measured by exact same technique 

on the same emulation, the conclusion of speed ups remains valid, even if there are systematic error in 

the measurements. The clock cycle values from this benchmark should not be compared with the clock 

cycles obtained from the different benchmarks. 

The vectorized implementation relies on the assumption that the order of the summation can be changed. 

Therefore, instead of adding results of the vector multiplication in one floating point register, we add the 
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results in the vector register and the final result is computed by the reduction after both input vectors are 

processed. The LMUL setting allows the VPU to group several vector registers into one. The grouping of 

registers does not increase number of the operation computed in one clock cycle, but it prolongs each 

vector instruction.  

2.4.3.3 Benchmark results 

The scalar implementation finished in 533 197 968 clock cycles. The Vector variant with LMUL equals one 

computed result in 99 020 236 clock cycles which indicates 5.3x speed up. Such speed up proves that 

VPU is fully utilized during the dot product computation. The vector registers are 128bit wide which means 

that they can execute operation on 4 elements simultaneously. Moreover, number of iterations of the 

computation look is reduce four times, which means that the overhead of the computation loop is also 

reduced.   

The vector tests for LMUL8 provides further speed up. Increasing the LMUL causes further reduction of 

number of iterations of the computation loop eight times. However, for every vector instruction, the VPU 

runs small loop in hardware to work on all vector registers. The observed speed up point to the effective 

design of the VPU sequencer, which generates sequences of micro-operation. 

Test Run Clock Cycles Speedup vs Scalar 

Vector result (LMUL8) 62 150 645 8.59677419354838 

Vector result (LMUL1) 99 020 236 5.38383838383838 

Scalar result 533 197 968 1 

Table 3. Dot-Product Macro Benchmark: Clock Cycles and Speedup 

On the measured dot product, the VPU obtained speed up of 8.58x. This proves that the VPU meets the 

KPI targeted in the SYCLOPS project.  

 

 

Figure 6. Dot-Product Macro Benchmark (Clock Cycles) 
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Figure 7. Dot-Product Speedup vs Scalar 

2.5 Summary  

The VPU experiments indicate that, with appropriate software, the platform meets the project’s KPI. These 

measurements are an initial evaluation; more precise and robust benchmarking is planned as the platform 

matures in the final phase of SYCLOPS. All tests used single-precision floats, so repeating the 

experiments with other data types will be needed for a fuller assessment. Broader testing and performance 

evaluation will form part of the future work to raise the prototype VPU’s TRL. 
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3. SYCLARA Open Source RISC-V Platform 

In parallel with the CSIP RISC-V platform, EUR worked on developing an open-source RISC-V vector 

extension platform called SYCLARA. SYCLARA is an end-to-end, hardware–software platform that can 

be used as a testbed to evaluate SYCL and RISC-V implementations together. In particular, we built upon 

the recent integration of the CVA6 RISC-V core [1] with ARA2 RVV accelerator [2] and extended it by 

adding Ethernet capability and enabling Linux boot from an SD card to bring up an RVV accelerator on 

the VCU118 platform deployed as a part of EMDC v2.0 at EUR.  

 

Figure 8. SYCLARA RISC-V platform 

3.1 SYCLARA Open Source RISC-V Platform 

Figure 8 shows a high-level overview of the architecture of the SoC we have adapted and brought up. It 

is based on the Cheshire SoC developed by the PULP platform and integrates CVA6, an open- source, 

high performance RISC-V processor core that implements the RV64GC ISA, with ARA, an open-source 

implementation of the RVV. The first integration of ARA with CVA6 was not capable of running Linux 

applications because ARA lacks an MMU. To overcome this limitation, we adopted a patched version of 

ARA2 and CVA6 where the MMU was shared between CVA6 and ARA. We brought up this integration on 

VCU118 by further adapting the DDR4 memory controller and using an SD card to hold the Linux image. 

In order to offload SYCL kernels to our hardware platform, we rely on DPC++ and the recently open-

sourced OCK. In particular, we used the OCK remote HAL, which provides a server and an OpenCL client 

that can be run on any standard Linux installation, and use socket connections to communicate with each 

other. This HAL relies on the accelerator being equipped with an Ethernet interface. Thus, we integrated 

an Ethernet module into the SoC to enable interaction with CVA6 and ARA from a SYCL host. In a study 

by Chaoqun Liang et al.1, Gigabit Ethernet was implemented and integrated into the Cheshire SoC and 

tested on Genesys2 and VCU118. However, they used an external Ethernet adapter with an Ethernet 

PHY and an RGMII interface. In contrast, we used the Xilinx 1G/2.5G BASE-X PCS/PMA or SGMII core, 

which converts the GMII interface to SGMII, the interface supported by the Ethernet PHY chip on the 

VCU118. For the MAC layer, we used an existing MAC 2. To overcome the clock domain crossing between 

the AXI interconnect and the Ethernet IP, a FIFO was used to bridge the AXI data. The Ethernet driver 

was adapted from the lowRISC Ethernet driver. We installed the driver and its dependencies on Linux 

using Buildroot, incorporating patch files for the CVA6-SDK and enable SSH support. 

We cross-compiled the HAL server for execution on CVA6. We compiled the HAL client to run on a local 

x86-64 machine. The default HAL client setup (targeting RV64GC) does not generate any vector 

instructions. Thus, we configured the HAL client manually by enabling the vector extension in the HAL 

                                                

1 Chaoqun Liang, Alessandro Ottaviano, Thomas Benz, Mattia Sinigaglia, Luca Benini, Angelo Garofalo, and  
Davide Rossi. 2024. A Gigabit, DMA-enhanced Open-Source Ethernet Controller for Mixed-Criticality Systems. In 
Proceedings of the 21st ACM International Conference on Computing Frontiers: Workshops and Special Sessions. 
55–58 
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device during compilation. Additionally, the vectorization factor can be adjusted using the environment 

variable CA_RISCV_VF. This variable acts as a multiplier for vectorization levels, allowing control over 

the degree of vectorization. 

3.2 Evaluation 

Having described the SYCLARA hardware–software stack, in this section, we present our experimental 

evaluation. The SoC has been implemented on the VCU118 evaluation board, which features a Xilinx 

Virtex UltraScale+ FPGA. CVA6 and ARA were clocked to run at 50 MHz. A higher clock rate was tested, 

but we encountered timing violations in CVA6 and ARA. The ARA configuration includes 2 lanes, and for 

the experiments reported here, we set the vector length (VLEN) to 2048. Table below presents the 

implementation results for the SoC, CVA6, ARA and Ethernet, showcasing resource usage such as LUTs, 

BRAMs, and DSPs. 

 

Table 4. SYCLARA Implementation results 

To evaluate the performance improvement of RVV compared to non-RVV, we tested two SYCL kernels: 

1D Convolution (conv), where we convolve two arrays with 4k entries, and matrix multiplication (matmul) 

of (150, 300) × (300, 600) matrices, as shown in the table below. We executed the two kernels on CVA6 

both in scalar mode and vector using ARA. Clearly, these results demonstrate that SYCL compiler and 

runtime toolchains are capable of exploiting RISC-V vector accelerators to improve performance, as the 

1D convolution execution time improves up to 6.27×, and matrix multiplication improves up to 6×. However, 

increasing the vectorization factor (CA_RISCV_VF) does not have a uniform impact across all 

applications. For instance, conv achieves the best performance with a VF of 16, but matmul does not 

improve beyond VF of 8.  

 

Table 4. SYCLARA evaluation results 

3.3 Summary 

In this work, we provided an overview of our SYCLARA platform that builds on OCK to offload SYCL 

computations on the ARA2 RVV accelerator integrated with the CVA6 RISC-V CPU. Using SYCLARA, we 

presented a preliminary evaluation of a few kernels to demonstrate that SYCL compiler toolchains 

developed in SYCLOPS can exploit RVV to improve performance on real RISC-V hardware. Given the 

lack of RVV implementations, we believe that SYCLARA provides a valuable framework for furthering 

research on open, standards-based hardware acceleration of analytics and AI.  
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4. CXL-enabled EMDC Testbed 

While sections 2 and 3 described the work done in the context of Task 3.2, this section describes the work 

done in the context of “Task 3.3: EMDC Assembly”. HIRO has developed a CXL-enabled EMDC testbed 

in SYCLOPS project. Figure 9 shows the hardware architecture of the EMDC, and Figure 10 is a 

preliminary 3D rendering of a possible module arrangement showing key components, starting with (1) 

multiple COM-HPC module that provides the central compute foundation. It is interconnected with (2) an 

Ethernet switch and (3) a PCIe switch to enable high-bandwidth connectivity and data routing. Power 

conversion for 12V only modules is handled by (4) a 48V to 12V converter, allowing low power modules 

to integrate. Compute acceleration or processing flexibility is achieved through (5) PIC64-HPSC or Nvidia 

Orin modules. For networking and centralized management interfaces, the design incorporates (6) OCP-

NIC 3.0 and (7) OCP-BMC DC-SCM 2.0 standard modules. Storage requirements are met with (8) EDSFF 

E1.S SSDs, while CXL memory expansion is supported by (9) EDSFF E3.S CXL memory modules. 

 

 

Figure 9: Overview of the EMDC architecture, based on custom form factors for latter adoption to 
established form factors like COM-HPC, COM Express, Orin AGX. 

 

Figure 10: Preliminary 3D-rendering of the EMDC platform. 

4.1 PCIe CXL Switch Development 

The PCIe/CXL switch is a cornerstone of the project providing the high-bandwidth fabric required to 

interconnect heterogeneous compute, storage, and accelerator resources. Its role is to replace rigid, 

monolithic server architectures with a composable infrastructure where modules can be flexibly pooled, 

reassigned, and orchestrated according to workload demand. 

While traditional PCIe deployments have been limited to host-to-device topologies, the rise of large-scale 

data fabrics and AI workloads requires far greater flexibility. The evolution to PCIe Gen6 and Compute 

Express Link (CXL) 3.0 represents a decisive step. PCIe Gen6 doubles the raw lane speed to 64 GT/s, 
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delivering up to 128 GB/s per x16 slot in one direction and ~256 GB/s bidirectional throughput, a 

performance class aligned with 800 Gb Ethernet and state-of-the-art accelerators. This is achieved not by 

merely pushing clock speeds, but by adopting PAM-4 modulation, forward-error correction (FEC), and a 

fixed 256-byte FLIT framing model. These innovations keep error rates under control at multi-tens of 

gigahertz signaling, while preserving software transparency: the same drivers that worked on PCIe Gen3 

continue to function unmodified. 

CXL builds on the PCIe physical layer, but extends it with cache-coherent protocols. In addition to CXL.io 

for I/O compatibility, CXL.cache and CXL.mem allow hosts and accelerators to share memory directly, 

eliminating the latency and complexity of software-based emulation layers. This makes it possible to build 

memory pools accessible across multiple nodes, a key enabler for disaggregated infrastructures. 
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4.1.1 Architecture and Implementation 

The EMDC integrates switches from the Broadcom PEX90000 family, currently the most advanced PCIe 

Gen6 silicon available and the first with roadmap support for CXL 3.0. Devices like the PEX90144 offer 

up to 144 lanes, sufficient to tie together CPU modules, GPU accelerators, FPGA boards, NVMe SSDs, 

and network cards within a single composable chassis. Connectivity is realized through MCIO cabling, 

which supports PCIe Gen6’s signal integrity requirements while remaining mechanically flexible. An x8 

MCIO link can be split into two x4s for SSDs, or combined into an x16 link for high-throughput accelerators. 

The switch supports partitioning and multi-host operation, allowing independent root complexes to coexist 

while still sharing selected resources. 

Figure 11 shows the hardware architecture of the PCIe switch module that enable high speed data transfer 

and module interconnectivity between CPU nodes and devices. Figure 12 shows the preliminary 3D 

rendering of the PCIe switch. 

 

Figure 11: Preliminary 3D of the PCIe/CXL switch board. 

 

Figure 12: Block Diagram of the PCIe/CXL switch board. 
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4.1.2 Prototyping and Validation 

The project’s PCI Express (PCIe) evaluation platform is built around Broadcom’s PEX 90000 switch family, 

one of the earliest silicon implementations to natively support the full PCIe 6.0 specification, including 64 

GT/s data rates, FLIT-mode packetization, and PAM-4 signaling. By standardizing on this switch family, 

every hardware substrate developed in the project, both the Embedded Micro Data Center (EMDC) sleds 

and the embedded High-Performance Server (eHPS) blades, shares an identical, forward-compatible 

PCIe backbone. 

  

 

Figure 13: Testbed photos  

4.1.2.1 HIB and RDK architecture 

Prior to embedding the switches on production boards, a multi-stage testbed was assembled to validate 

the switch architecture before embedding into production EMDC sleds as shown in Figure 13. The setup 

combines Host Interface Boards (HIBs) that connect a server root complex to the switch, and Rapid 

Development Kits (RDKs) that expose downstream ports for GPUs, FPGAs, and NVMe devices as shown 

in Figure 14. In more advanced topologies shown in Figure 13, three PEX90144 switches are 

interconnected, enabling multi-host stress tests and exploration of complex partitioning scenarios.  
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Figure14: PCIe testbed with basic functionality 

 

Figure 15: Multi-host PCIe testbed with HIB and RDK for full functionality 

Validation efforts confirmed reliable 64 GT/s signaling with PAM-4, proper operation of FEC/CRC retry 

mechanisms, and stable link margining across high-loss channels. Host-to-host NTB communication was 

successfully tested within Linux, while early experiments with CXL decoders and ACPI table integration 

are underway. These steps ensure that when full CXL 3.0 support becomes available in silicon, the EMDC 

fabric will be ready to adopt it.  

4.1.2.2 Production board manufacturing and integration 

Based on the successful validation effort, we have already started the manufacturing of the actual PCB 

with the switch. We expect the actual hardware to be ready for bring up and testing by the end of October. 

We plan to test the hardware as follows. The validation of the PCIe/CXL switch module is designed to 

ensure both the physical performance of Gen6 signaling and the functional capabilities required for the 

EMDC fabric. Testing begins at the physical layer, where each port is powered and trained to 64 GT/s. 

Signal integrity is confirmed through on-die eye-diagram monitoring and PRBS stress patterns, while 

live lane-margining commands verify that all three PAM-4 “eyes” remain open under load. Forward-error 
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correction counters and CRC retries are observed during induced noise conditions to prove the robustness 

of the FLIT-mode encoding. 

 Once physical stability is secured, the switch is exercised in managed firmware mode. Using 

Broadcom’s SDK, we access detailed packet analyzers and performance counters to validate FEC 

efficiency, port bifurcation, and Dynamic Port Reconfiguration. A key step is the demonstration of 

flexible MCIO connectivity, where ×8 links can be bifurcated into dual ×4s for EDSFF storage or 

combined into full ×16 paths for accelerators. 

 Throughput and latency are characterized with mixed device classes. Standard NVMe drives are 

benchmarked with fio and SPDK, while GPUs and FPGAs validate peer-to-peer transfers through the 

switch. In Gen6 mode the target envelope is ≈121 GB/s one-way on ×16 ports and up to ≈256 GB/s 

bidirectional, with host-to-device and device-to-device paths both measured. Latency overhead is 

expected in the tens of nanoseconds per hop, well within HPC and AI accelerator requirements. 

Beyond raw bandwidth, the switch enables multi-host partitioning and Non-Transparent Bridging (NTB). 

Partitioning tests create multiple isolated root complexes with dedicated endpoint visibility, confirmed by 

configuration-space scans and controlled failover. NTB is validated by mapping memory windows and 

doorbells between two hosts, exposing the link as a virtual Ethernet device in Linux. These host-to-host 

transfers are expected to deliver tens of GB/s at microsecond-scale latency, demonstrating that the switch 

can serve as a low-latency inter-CPU fabric. 

Finally, using both the testbed and the manufactured switch hardware, we plan to conduct integration tests 

that demonstrate the potential of PCIe v6.0 in accelerating SYCLOPS use cases. 

4.2 CXL-enabled GPU server 

The goal of our work on CXL-enabled PCIe switching is to research the next generating switching 

technology for our EMDC. Due to the low-level nature of this work, and the fact that while PCIe Gen6 

switches are shipping, CXL 3.0 support is still limited in silicon and ecosystem software, the work in this 

task is not meant to be directly integrated with higher-level software. 

However, there are already CXL 2.0 solutions available in the market, and the Linux kernel already 

provides a CXL subsystem to integrate such solutions. In order to provide SYCLOPS partners the ability 

to work on current CXL solutions, we also developed a stand-alone CXL server using COTS components 

in collaboration with Micron and Supermicro. The server is based on the Supermicro SSG-121E-NE3X12R 

platform, which is a dual-CPU server with 128 cores and 256GB of DRAM. The system incorporates a 

Micron CXL 128G DDR4 PCIe5 E3.S CXL module. This CXL device registers a physical size of 128 GB. 

The server is also equipped with a L40S GPU, making it possible for SYCLOPS partners to execute their 

cross-architecture application on both CPU and GPU, and on local DRAM and CXL memory, and 

investigate tradeoffs. 

We worked together with Micron in configuring the server to get CXL memory recognized and supported 

for use by applications. The Micron device includes a mailbox and, crucially, operates in system-ram mode 

by default, which allows it to be used directly via numactl. In the dual-CPU environment, the server 

presents three NUMA nodes: nodes 0 and 1 correspond to the two CPUs, while the CXL device is mapped 

as NUMA node 2. The total memory capacity detected by the OS is 257,315 MB, with Node 0 having 

63,853 MB, Node 1 having 62,390 MB, and Node 2 (CXL) initially reporting 131,072 MB.  

A critical difficulty encountered during the initial configuration was the inability to reconfigure the CXL 

memory to work in devdax mode. The command sudo daxctl reconfigure-device --mode=devdax 

dax0.0 --force failed, reporting "Device or resource busy," thereby making it impossible to run 

benchmarks specifically designed for DAX mode. Furthermore, this unsuccessful reconfiguration attempt 

resulted in unexpected behaviour, where a portion of the memory blocks was put offline, causing the 

reported size of NUMA node 2 to drop from 131,072 MB to 94,208 MB. Another infrastructure issue 

involved the toolkit provided by Micron; the latest versions of mxcli did not return any output or function 
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at all, while the older version available in the cxl-reskit repository had limited functionality, only allowing 

connection to the module without the ability to pass commands or acquire logs. We worked with Micron 

on solving these issues to get CXL memory operational. 

We also did preliminary performance testing that revealed varied results across different benchmarks. The 

Memory Latency Checker (MLC) showed mixed findings; latency between CPU node 0 and the CXL 

device (node 2) was surprisingly low, almost matching the latency between the two CPU nodes (0 and 1). 

However, the latency between CPU node 1 and CXL node 2 was significantly higher, recorded at almost 

3.5 times longer than typical inter-CPU communication. The pointer chasing benchmark, Multichase, 

indicated that CXL performance was only slightly slower than DRAM (about 2 nanoseconds difference), 

confirming that the CXL memory was functional. In stark contrast, the STREAM benchmark results 

demonstrated that CXL memory exhibited approximately 10 times less memory bandwidth compared to 

DRAM, and average running times were 15 times longer for CXL. 

The CXL server has been installed at the HIRO datacentre in Budapest, and we have made it available to 

SYCLOPS consortium members for research and development activities. 
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5. Conclusion 

 This deliverable concludes the work done in "Task 3.2: RISC-V reference platform" and "Task 3.3: EMDC 

assembly" of WP3 in the SYCOPS project, and documents the successful deployment and initial 

evaluation of the EMDC v2.0 infrastructure. Experiments on the proprietary CSIP Vector Processing Unit 

(VPU) confirmed that the platform meets the project’s Key Performance Indicators (KPIs) by 

demonstrating significant speedups on vector and matrix operations. In parallel, using the SYCLARA 

open-source platform, we demonstrated that the SYCL compiler toolchains developed in WP4 of the 

SYCLOPS project are capable of leveraging RVV technology to enhance performance on real RISC-V 

hardware. 

The infrastructure development focused on establishing a future-proof backbone through the PCIe/CXL 

switch, which is critical for constructing composable infrastructures. This foundational work ensures the 

EMDC fabric is prepared for the maturation of CXL, which will unlock capabilities such as true memory 

disaggregation, coherent accelerators, and dynamic orchestration across fabrics. This strategic 

development positions the HIRO EMDC at the forefront of the transition between current PCIe ecosystems 

and future coherent CXL datacenters. 

In the final phase of the project, we are working on integrating the software developed in SYCLOPS for 

each use case, deploying them on the hardware described in this deliverable, performing end-to-end 

performance analysis, and demonstrating concrete improvements bought about by the SYCLOPS 

hardware—software as a whole to each application vertical. 


