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Disclaimer

This document contains material, which is the copyright of certain SYCLOPS contractors, and may not be
reproduced or copied without permission. All SYCLOPS consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information contained
in this document may require a license from the proprietor of that information. The reproduction of this
document or of parts of it requires an agreement with the proprietor of that information.

The SYCLOPS consortium consists of the following partners:

Partner Organisation Name Partner Organisation Short Country
NETE]
1 EURECOM EUR FR
2 INESC ID - INSTITUTO DE INESC PT
ENGENHARIADE
SISTEMAS E COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA
3 RUPRECHT-KARLS- UHEI DE
UNIVERSITAET HEIDELBERG
4 ORGANISATION EUROPEENNE CERN CH
POUR LA RECHERCHE
NUCLEAIRE
5 HIRO MICRODATACENTERS B.V.  HIRO NL
6 ACCELOM ACC FR
7 CODASIPSRO CsIP Cz
8 CODEPLAY SOFTWARE LIMITED CPLAY UK
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This deliverable outlines the work done in “Task 4.1: Compiler support for RISC-V” in WP4 of the SYCLOPS
project. The central objective of this task was developing SYCL compilers to facilitate the execution of SYCL
applications on RISC-V and other accelerators provided by the SYCLOPS infrastructure layer. This has
been achieved with significant improvements in the two compiler toolchains developed in SYCLOPS,
namely, DPC++ and Adaptive CPP.

Executive Summary

On the DPC++ front, DPC++ and oneAPI Construction Kit were adapted to support both native building and
cross-compilation for RISC-V platforms. Integration with the latest LLVM and OCK compiler pipeline
enabled support for RISC-V Vector extensions version 1.0 (RVV 1.0), ensuring SYCLOPS use cases are
deployable on RVV targets like the A730 core deployed in SYCLOPS EMDC v2.0. oneTBB was successfully
integrated into the DPC++ NativeCPU device, allowing for powerful thread scheduling with NUMA support
on multi-socket CPU platforms.

On the AdaptiveCPP front, generic Single-Pass (SSCP) JIT compiler, which is now the default, was
substantially improved. This unified infrastructure allows a single compilation to generate a binary capable
of dispatching to various devices (AMD GPUs, NVIDIA GPUs, and SPIR-V for OpenCL/RISC-V/OCK),
making AdaptiveCpp the only SYCL implementation with this unified JIT compilation capability. A crucial
new OpenCL runtime backend was added to AdaptiveCpp to target OpenCL devices using SPIR-V,
enabling compatibility with the oneAPI Construction Kit required for RISC-V hardware. Extensive JIT-time
optimizations were introduced, including a unified two-level kernel cache and the introduction of adaptivity
levels. By leveraging these JIT-time opportunities, AdaptiveCpp was optimized to the point where it typically
outperforms vendor compilers (e.g., outperforming CUDA by 30% and oneAPI by 23% in geometric mean).
Finally, AdaptiveCpp 25.02 introduced PCUDA, an implementation of the CUDA and HIP programming
languages within the generic JIT compiler. This allows for mixing SYCL and CUDA/HIP code while retaining
the full cross-architecture portability of AdaptiveCpp's SYCL compilation.
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Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer, (ii)
platform layer, and (iii) application libraries and tools layer.

1.Introduction

_________________________________________________________________________________________________________

5 | Autonomous systems |

i | High-energy physics analysis | Applications

i | Precision oncology |

Performance profiling & analysis tools }

Libraries &
Tools

Platform

__________________________________

CPU

RISC-V
RVV accelerator

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and provides
heterogeneous hardware with a wide range of accelerators from several vendors.

TITITTT

Figure 1. SYCLOPS architecture

Platform layer: The platform layer, provides the software required to compile, execute, and interpret SYCL
applications over processors in the infrastructure layer. The second layer from the bottom, the platform
layer, provides the software required to compile, execute, and interpret SYCL applications over processors
in the infrastructure layer. SYCLOPS will contain oneAP| DPC++ compiler from CPLAY, and AdaptiveCpp,
formerly known as hipSYCL, an open-source SYCL compiler toolchain from UHEI. In terms of SYCL
interpreters, SYCLOPS will contain Cling from CERN.

Application libraries and tools layer: The libraries layer enables API-based programming by providing
pre-designed, tuned libraries for various deep learning methods for the PointNet autonomous systems use
case (SYCL-DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel
algorithms for scalable genomic analysis (SYCL-GAL).

This deliverable concerns the SYCL compilers part of the stack as highlighted in Figure 1, and covers the
work done on the two compiler toolchains in the context of “Task 4.1: Compiler support for RISC-V”in WP4
(M3-M33). This deliverable is a summary of this work with a special focus on (i) support for RISC-V vector
hardware available in the SYCLOPS platform at M33 especially the oneAPI Construction Kit, and (ii) support
for other advanced functionalities that can support applications beyond the scope of SYCLOPS. All
functionalities described in this deliverable have already been merged and integrated in several public
releases of DPC++ and AdaptiveCpp that have been made during the project. Both compiler toolchains are
available as open source software for maximal transparency, reproducibility and maintainability.

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level overview of the
overall SYCLOPS architecture and positions this deliverable with respect to both components in the
SYCLOPS stack and WP/tasks in the work plan. Section 2 describes updates to DPC++ and oneAPI.
Section 3 describes updates to AdaptiveCpp.
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2. DPC++ and oneAPI Construction Kit

After the official launch of project SYCLOPS, Intel acquired our partner CPLAY. As a result, CPLAY’s
proprietary ACORAN ComputeCPP compiler, originally described in the SYCLOPS proposal, was
discontinued. It has since been replaced with the open-source DPC++ compiler, which now serves as one
of the SYCL implementations used within SYCLOPS. DPC++ is a modern, open-source SYCL compiler and
runtime supported by a significantly larger developer and user community. Together, DPC++ and SYCL
form the foundation of oneAPl—an open, cross-architecture programming model that enables developers
to maintain a single codebase across diverse accelerator platforms such as GPUs and FPGAs.

With the rapid growth of Al adoption, hardware vendors increasingly design specialized Al processors
optimized for inference and/or training, delivering better efficiency than standard off-the-shelf hardware.
However, these custom processors often present challenges for developers, as they typically require porting
software to proprietary and non-standard programming models. To address this, CPLAY developed the
oneAPI Construction Kit (OCK), which extends the benefits of oneAPI and SYCL to new and custom
hardware. OCK evolved from ComputeAorta—part of the ACORAN toolchain originally created by CPLAY—
and is designed to unlock the full performance of heterogeneous hardware while providing developers with
standards-compliant interfaces.

The following diagram shows how OCK currently makes it possible to add new devices so that they can
make use of the DPC++ SYCL compiler.

DPC++ Runtime
Library

OpenCL Plugin

oneAPI Construction Kit

Customer Customer
ComputeMux Runtime ComputeMux Compiler

Customer HAL Customer LLVM
Install

Figure 2: Components of the oneAPI construction Kit

In deliverable “D4.1: RISC-V Compiler Backends”, we presented the work done in M1—M18 in using the
oneAPI construction Kit to support the RISC-V platforms that were deployed in EMDC v1.0 of SYCLOPS
project at M18. In the following period M18-M33, oneAPI construction Kit and DPC++ have been extended
in several ways.

First, the compilation process has been simplified to enable build of oneAPI construction Kit and DPC++
natively on RISC-V platforms. This was successfully tested on the MilkV RISC-V board hosted by
EURECOM. Both projects have also been adapted to enable them to be cross-compiled for RISC-V to
enable powerful build machines to compile RISC-V SYCL/OpenCL applications.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.2 — Compiler with auto vectorization Page 8 of 22



%) SYCLOPS

Second, to document the current status of the compiler support on RISC-V we have created public
continuous  integration test jobs on the oneAPl Construction Kit (OCK) Github
(https://github.com/uxlfoundation/oneapi-construction-kit) for building and running the OpenCL and SYCL
Conformance Test Suite (CTS) on RISC-V. The SYCL CTS is built (cross-compiled) and run via two targets:
1) the Native CPU target and 2) OpenCL where the OpenCL driver was built from OCK. This CI runs daily.
For example, the log of the complete CI run from 29" July 2025 can be found at the following location:
https://github.com/uxifoundation/oneapi-construction-kit/actions/runs/16605113958

The following figure shows a snapshot of the SYCL_CTS run on RISC-V via NativeCPU (top right) and via
OCK OpenCL (bottom right).

* & L./ ../ build_sycl_cts_ris.. imd43s @ * @ L./ ./ run_sycl_cts_riscv. Gmiz @

Watrie L21_ S 5_ f nun_sycl_cts_ris...

* @ L. /.. /build_syc_cts_ris.. imids ® * @ L./ . /run_sycl_cts_risc.. 3n53m @

Figure 3: Snapshot of SYCL_CTS run on RISC-V via NativeCPU

Note that SYCL_CTS run via OpenCL is significantly slower than via Native CPU. This is because the
OpenCL driver compiles the kernels at run-time, which is particularly slow in the current setup as the
compiler runs on QEMU. This can be mitigated by adding a self-hosted github runner that uses a more
powerful RISC-V device to build and run the kernels. The OpenCL CTS SYCL CTS
(https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958/job/46986601757)
pass rate on RISC-V is 100% (Note some tests were skipped due to missing capabilities of the RISC-V
platform). The SYCL-CTS pass rate on RISC-V via 1) OpenCL is 99.7%
https://github.com/uxifoundation/oneapi-construction-kit/actions/runs/16605113958/job/46990593490 and
2) with NativeCPU 93.9% hitps://github.com/uxlfoundation/oneapi-construction-
kit/actions/runs/16605113958/job/46990670653.

Third, we have integrated DPC++ with the latest the latest LLVM version to take advantage of the most
recent RISC-V code generation improvements. Similarly, the NativeCPU device in DPC++ integrates the
oneAPI Construction Kit compiler pipeline to take advantage of code transformations. oneTBB has been
successfully integrated into the DPC++ NativeCPU device and tested on RISC-V. The net result of all this
work is that we can now perform powerful thread scheduling with NUMA support, which benefits all
SYCLOPS use cases and beyond on platforms with multiple CPU sockets, like the MilkV RISC-V board
deployed at EURECOM.

Fourth, and most importantly, RISC-V Vector extensions version 1.0 has been enabled and tested in Cl
jobs mentioned previously. This will enable the OCK OpenCL driver and the OCK compiler pipeline within
NativeCPU device to produce RVV1.0. We merged various PRs with fixes and updates to the OCK
vectorizer targeting RISC-V (including issues exposed by using —march options). Through this work, we
enable all SYCLOPS use cases to be deployable on RVV targets, like the updated A730 core provided by
our partner CSIP that has been deployed at EURECOM as a part of EMDC v2.0 and described in deliverable
“D3.2: EMDC v2.0 with RVV accelerator release”. Experimental results evaluating and validating DPC++
on EMDC v2.0 are also described in deliverable D3.2.
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During the project time frame, a number of important changes were introduced to facilitate RISC-V
support, and to improve the supporting compiler and runtime infrastructure in general.

3. AdaptiveCPP

Firstly, the hipSYCL project was renamed to AdaptiveCpp to better reflect the broadened focus of the
project, since the old name was frequently misinterpreted as a focus on AMD hardware. This renaming was
positively received. For example, the rate in which the project received stars on github (this roughly
corresponds to github users marking a project as interesting to them) increased noticeably after the old
name was abandoned in early 2023. This is illustrated in the figure below.

1000

800

600

Github
stars

200

2019 2020 2021 2022 2023 2024
Time

Figure 4: Github stars for AdaptiveCpp repo

On the technical side, substantial changes were introduced. Because the strategy for targeting RISC-V
hardware relies on targeting Codeplay’s oneAPI construction kit, AdaptiveCpp needed to be able to target
OpenCL devices using SPIR-V, as this is how the oneAPI construction kit operates.

AdaptiveCpp supports a generic single-pass (SSCP) JIT compiler. This compiler embeds the device code
at compile time as generic intermediate representation (IR) of the LLVM compiler infrastructure. At runtime,
it can then generate amdgcn code for AMD GPUs, PTX code for NVIDIA GPUs, and SPIR-V for OpenCL
devices (e.g. Intel GPUs or RISC-V). Recently, an additional backend was added to target the native host
CPU. This design has the advantage that a single compilation can generate a binary that can dispatch to
all of the devices supported by AdaptiveCpp, depending on what is found on the system.

AdaptiveCpp is the only SYCL implementation that can generate code for all these devices with a unified
JIT compilation infrastructure.

Releases
Within the project time frame, there have been two releases:

o AdaptiveCpp 23.10 (Full release details:
https://github.com/Adaptive Cpp/AdaptiveCpp/releases/tag/v23.10.0)

o AdaptiveCpp 24.02 (Full release details:
https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.02.0)

e AdaptiveCpp 24.06 (Full release details:
https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.06.0)

e AdaptiveCpp 24.10 (Full release details:
https://qgithub.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.10.0)

* AdaptiveCpp 25.02 (Full release details:
https://github.com/Adaptive Cpp/AdaptiveCpp/releases/tag/v25.02.0)
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AdaptiveCpp 25.10 is scheduled to be released later this year in October. In order to better structure
development and provide stronger guarantees for users, a fixed regular release schedule was adopted.

AdaptiveCpp was routinely presented, e.g. in tutorials at conferences (often as part of broader SYCL
tutorials) such as at IWOCL’ 23, IWOCL ‘24, IWOCL ‘25, ISC ‘23, ISC ‘24 as well as in dedicated talks, e.g.
at PASC 24 [6] .

The International Workshop on OpenCL and SYCL ‘25 (IWOCL ‘25) was also hosted by our team at
Heidelberg University.

1.1 OpenCL Runtime Backend

While the generic JIT compiler was already available at the beginning of the project, it was still experimental
and did not yet support OpenCL.

AdaptiveCpp has a modular C++ interface for backends. Therefore, adding new runtime backends is fairly
straight-forward as it mainly requires implementing these interfaces. We have thus added a new OpenCL
runtime backend, which has since been shown to perform well (see e.g. for performance on Intel GPUs with
OpenCL [1]).

Our publication on SYCL-Bench 2020 [2] contains microbenchmarks on some aspects of the runtime. For
example, Figure 5 shown below (taken from [2]) shows the task scheduling latency for 50000 kernel
launches on various hardware — the data on the Intel Max 1100 GPU was obtained using the new OpenCL
backend. For the more modern USM memory management API in SYCL, AdaptiveCpp’s OpenCL backend
even outperforms the Intel oneAPI DPC++ compiler on the Intel GPU. Note that the data for the AMD MI100
GPU in the DPC++ case is missing due to excessive runtime.

Apart from the AMD case, AdaptiveCpp and oneAPI DPC++ perform similarly for this workload.

B Accessors @EEm USM
Intel DPC++ AdaptiveCpp

LL .Ll

Tesla V100S Intel Max 1100 AMD MI100 Tesla V100S Intel Max 1100 AMD MI100

System time (s)
e o ©o o o e @2
N w RSy wv (=] ~ [e+]

e
=

o
=}

Figure 5: Task scheduling latency on various hardware

1.1.1 Code generation

SPIR-V generation through the generic JIT compiler is a complex process that was substantially improved
and optimized over the course of the project. The original design of our compiler can be found in [3].
Firstly, SYCL features were implemented that at the start of the project were still missing in the generic
JIT compiler. This in particular affects atomics, group algorithms and the SYCL 2020 reduction interface.
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@ AdaptiveCpp-SMCP
[N AdaptiveCpp-SSCP
B Intel DPC++

Execution time [ms]
= [ N N w
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w

Tesla V100S Intel Max 1100 AMD MI100
Figure 6: Task scheduling latency on various hardware

Atomics in the generic JIT compiler are implemented using a built-in interface that is implemented in
backend-specific LLVM bit code libraries. Compare-and-swap loops as emulations of atomics are only used
in cases where there is no native backend functionality to represent an atomic operation.

Figure 6 shown above (again taken from our paper [2]) shows microbenchmark results using the atomic
test from SYCL-Bench 2020. The SSCP results refer to our new generic JIT compiler, and the SMCP results,
where available, to our old compiler. As can be seen, the atomic implementation in the generic JIT compiler
behaves very similarly compared to either DPC++ or our old (non-SPIR-V capable) compilers.

The SYCL 2020 reduction interface defines a flexible API that allows specifying reductions over arbitrary
types (including user-defined types) and arbitrary reduction operators, as long as they are associative. This
also include cases where no identity for the reduction is known.

This generality makes reductions challenging to implement, and to optimize. We have added an
implementation that supports arbitrary data types and arbitrary reduction operators. Additionally, it employs
an efficient caching scheme for scratch allocations that might be needed. Additional optimizations include
assigning multiple reduction elements to each SYCL work item to better utilize memory bandwidth, as well
backend-specific code paths. In particular, when running on the CPU, a different memory access pattern is
employed. With the BabelStream benchmark, we find that our reduction implementation delivers
performance in line with other compilers and programming models for the same problem, and in line with
the hardware’s memory bandwidth.

In the original implementation of the generic JIT compiler, the -ffast-math optimization flag was not yet
correctly exploited. This flag is commonly used by applications which prefer speed over accuracy.

We have thus added proper fast-math handling, which includes a) relaxing numerical requirements when
compiling user code and b) linking against bitcode libraries providing e.g. math builtins that employ similar
optimizations. Furthermore, the default floating point model of the compiler was aligned to the defaults of
other heterogeneous compilers (e.g. AMD’s HIP compiler or DPC++) and now uses the clang option -ffp-
contract=fast by default. This can result in a noticeable performance increase for applications not requesting
a specific floating point model at compile time.

With the release of AdaptiveCpp 24.02, the generic JIT compiler was elevated to be the default compiler of
AdaptiveCpp. This means that a simple compiler invocation (e.g. acpp -o test test.cpp) will by default
generate a binary that can dispatch kernels to the host CPU, NVIDIA GPUs, AMD GPUs, Intel GPUs, as
well as the oneAPI construction kit, and thus RISC-V hardware.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.2 — Compiler with auto vectorization Page 12 of 22
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1.2 Adaptivity and JIT-time optimizations

The AdaptiveCpp generic JIT compiler lowers and optimizes LLVM IR at runtime for the target backends.
This opens the door for a wide array of runtime optimizations, but can cause additional overheads compared
to directly generating e.g. SPIR-V at compile time. To mitigate this, AdaptiveCpp 24.02 has introduced a
unified kernel cache across backends, with a persistent second-level cache on disk. To enable this two-
level cache system, a new mechanism of uniquely identifying kernels was introduced: A 128-bit hash
generated from all of configuration parameters specifying the current JIT compilation, such as target
backend, device and target architecture, the translation unit that the kernel originates from, the kernel name,
and others. Especially for future application runs, the persistent cache mitigates the impact of the additional
step of processing the LLVM IR, which other compilers do not have to do.

With a JIT compiler, it is in principle possible to perform optimizations that are impossible in a static
compilation model, since a JIT compiler can take into account information only known at runtime. A
downside of performing such JIT-time optimizations is however that it might lead to additional JIT
compilations.

With JIT overheads having been mitigated as a concern with the persistent cache, we have decided to
implement additional JIT-time optimizations that are not commonly done by default in other production
compilers. To this end, we have introduced the ACPP_ADAPTIVITY_LEVEL environment variable, which
can be interpreted as a runtime optimization level: If the adaptivity level is 0, it will not perform any additional
optimizations, trying to avoid additional JIT compilation steps. If the adaptivity level is 1, a set of
optimizations is enabled that typically do not require many additional kernels to be generated and are thus
relatively risk-free. This includes hardwiring the kernel work group size as a constant in the code, and also
informing the backend optimizer about the kernel work group size, which can help register scheduling. Other
optimizations include the detection of whether the problem size fits in 32-bit integers, and if so, not carrying
out calculations e.g. to determine the global id of a work item in 64-bit.

The performance results in Figure 7 below show the performance improvements on NVIDIA, AMD and
Intel that were achieved from the combined effect of the previously mentioned improvements at the time
of the AdaptiveCpp 24.02 release, compared to the previous version 23.10. DPC++ results are provided
as reference as well. As can be seen from these results, the performance increase from AdaptiveCpp
23.10 to 24.02 is noticeable on all backends, and it competes very well with DPC++.
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Figure 7: Performance results on NVIDIA, AMD, and Intel hardware

After the release of AdaptiveCpp 24.02, we have also started to introduce the first optimizations for a more
aggressive setting of an adaptivity level of 2. At a level of 2, AdaptiveCpp is free to employ optimizations
that are expected to come with additional JIT costs, kernel launch latencies or might need more application
runs to achieve peak performance.

At this setting, AdaptiveCpp will analyze at runtime the usage patterns of arguments that get passed into
kernels. If it detects that specific values are commonly used as arguments, it hardwires them as constants
at JIT-time, compiling a new, specialized kernel. Because the LLVM optimization pipeline is only run after
this process, the value will be propagated as a constant throughout the code, which could lead e.g. to dead
code elimination or reduced register usage. This idea is similar to specialization constants from the SYCL
2020 specification, except that it happens automatically. Effectively, this feature enables not only constant
propagation across the host-device boundary, but also the propagation of runtime values which are de-facto
constants into device code as constants.

The detection of these common kernel arguments is enabled by storing a persistent, application-specific
database containing statistical information on kernel invocations and kernel arguments on disk. Kernels are
again identified using the 128-bit hash of the kernel configuration. This allows AdaptiveCpp to learn across
multiple application runs which kernel argument values might be worth JIT-compiling a dedicated kernel for.
Because it is in general impractical to store data on every different value that has ever been passed into
the kernel, heuristics are employed to evict information on kernel arguments that have not been used in a
while from the database.
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This feature is now mature as of AdaptiveCpp 25.02. Performance-wise, the benefit of this feature seems
to highly depend on the code and the target hardware. We see benefits especially for compute-bound
applications, e.g. miniBUDE improving performance by ~10% on NVIDIA or ~30% on an Intel iGPU.

Furthermore, we have introduced additional optimizations at adaptivity level 1. This includes e.g. the ability
to take into account the alignment of input pointers for kernels, and to automatically detect cases where
input pointers don’t alias. To this end, the AdaptiveCpp JIT compiler attempts to prove that a kernel does
not perform indirect access, i.e. does not load pointers from memory. If no indirect access is present, then
the set of allocations passed through kernel pointer arguments are all allocations that the kernel can access.
If the allocation referred to by one pointer kernel argument is not referred to by any other pointer kernel
argument, then the compiler can safely assume that no aliasing takes place. This has far-reaching
consequences, and can allow the optimizer to reorder loads and stores, or cache loads etc.

In 2025, we have published a comprehensive description and evaluation of the adaptivity framework [4].
Figure 8 below from the publication shows the obtained results using the latest set of optimizations on
NVIDIA RTX A500, AMD Radeon Pro VII and Intel UHD 630 respectively using a recent version of

AdaptiveCpp. Results are normalized to the vendor native programming model and compiler (nvcc-compiled
CUDA, hipcc-compiled HIP, icpx-compiled oneAPI).
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Figure 8: Performance results on NVIDIA, AMD, and Intel hardware

As can be seen, AdaptiveCpp typically outperforms vendor compilers. CUDA is outperformed by 30% in the
geometric mean, and HIP and oneAPI by 44% and 23%, respectively. Potential JIT-overheads were
investigated in detail, and were found to not play a role in typical cases and use cases (see [4] for details).
This is primarily because of the effectiveness of the design of the JIT-cache, and because the optimizations
are selected carefully so that they don’t typically result in excessive amounts of generated kernels. In fact,
for the investigated benchmarks we find that the amount of generated kernels stays the exactly same in
almost all cases — therefore, the JIT-optimizations do not result in more overhead than any other JIT-based
compiler that does not leverage such techniques.

1.3 User-driven runtime modification of kernels

In addition to these automatic JIT optimizations, we have also introduced APIs to leverage the JIT compiler
more explicitly. This is targeted at users who wish more control for optimizations.

Firstly, wrapping a kernel argument in a new sycl::specialized type is interpreted as a hint to the runtime to
generate a new kernel that has the value of this argument hardwired as a constant. This is a very similar
use case as the SYCL 2020 specialization constant API. However, our APl was developed to address
shortcomings of the API in the SYCL specification:

e The SYCL API requires explicit get and set calls to set and retrieve and set the value, and all
accesses need to be funneled through an additional kernel_handler argument that is passed to the
kernel. This design makes it cumbersome both for the user to use and for the implementer to
implement;

e Whenever a JIT compiler is unavailable (e.g. in an ahead-of-time compilation scenario)
specialization constant support must be emulated. The additional indirection through the
kernel_handler object can in this case lead to substantial performance overheads, especially since
specialization constants are typically used in the hottest parts of the code.

Our sycl::specialized extension avoids both problems: It is very convenient and easy to use, and, if no JIT
compiler is available, it incurs no additional overhead compared to a regular kernel argument. This
extension has been presented in the Khronos SYCL working group for potential standardization in the
future.

The second feature to expose the JIT compiler to users that we have added is the experimental ability to
modify function calls at runtime. Users can at runtime instruct the JIT compiler to replace calls to a function
A with another function B, or replace all calls to function A with a call sequence to other functions B and C.
Once the calls have been replaced, there is no overhead compared to a regular function call.
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This feature, which we call “dynamic functions”, effectively allows for a runtime assembly of kernels. Users
can use it to implement a form of JIT-time polymorphism, where kernel behaviour needs to change based
on runtime values. Since function calls can also be replaced by call sequences to other kernels, kernel-
fusion-like semantics are also possible. This feature is currently available in an experimental state for users
to evaluate.

1.4 AdaptiveCpp Portable CUDA (PCUDA)

Another feature that was added recently and released as part of AdaptiveCpp 25.02 is portable CUDA
(PCUDA). PCUDA is an implementation of (a slight dialect of) the CUDA and HIP programming languages
in the AdaptiveCpp generic JIT compiler. This allows users to mix-and-match SYCL code with CUDA (or
HIP) code e.g. for the purpose of simplified, iterative porting. Because the CUDA code is compiled by our
generic JIT compiler, the resulting program is just as portable as SYCL code compiled by AdaptiveCpp.

This has multiple benefits:

1. Code can be ported iteratively to SYCL; highly-optimized complex parts written in CUDA could also
be left as-is to avoid risk;

2. Existing CUDA or HIP code might run on other hardware with no or little changes;

3. When making comparisons between CUDA and SYCL (e.g. performance or compile-time), it allows
for fairer comparisons. Currently, such comparisons require changing multiple variables — input
program, programming model and compiler. With PCUDA, the compiler can be kept the same
between, thus simplifying distinguishing between effects due to different compilers, and effects due
to the programming model or different code quality of the CUDA/SYCL ports of the input code.

To this end, support for key syntactic constructs in CUDA and HIP was added to AdaptiveCpp’s generic JIT
compiler, and an implementation of the CUDA/HIP runtime was added to AdaptiveCpp, with interoperability
with SYCL.

CUDA and HIP mostly differ from each other based on the naming scheme for runtime functions: CUDA
functions are prefixed with cuda while HIP functions are prefixed with hip. PCUDA supports both naming
schemes, depending on whether the CUDA or HIP headers are included.

Compilers that can compile CUDA or HIP code for other hardware already exist (e.g. the chipStar project).
However, there no other solution to our knowledge currently provides full interoperability with SYCL on both
a source and runtime level, and also enables the same portability as AdaptiveCpp’s SYCL support: Running
kernels on CPUs, Intel GPUs, NVIDIA GPUs and AMD GPUs from a single binary.

There are some subtle differences between CUDA/HIP and PCUDA, which is why we generally call PCUDA
a CUDA dialect. These differences are mostly related to the different compiler designs. NVIDIA’s nvcc
compiler is an ahead-of-time compiler with distinct host and device passes, while AdaptiveCpp is a JIT
design with unified host-device compiler. AMD’s hipcc is similar in this respect to nvcc. These differences
necessitate some divergence e.g. in how code paths can be specialized for different targets.

In nvec’s CUDA, this can be accomplished by checking target macros defined by the compiler due to its
ahead-of-time design. In a JIT-design however, it is generally not known on which hardware the code will
be run until JIT compilation is triggered at runtime. Therefore, target macros cannot be available. Instead,
AdaptiveCpp has a JIT-reflection mechanism that operates as part of control flow. We note that NVIDIA’s
nvc++ uses similar mechanisms. A detailed discussion on how PCUDA diverges from CUDA or HIP can be
found in the AdaptiveCpp documentation [5].

PCUDA is a very recent feature, therefore the list of supported CUDA APIs is still limited. However, support
is sufficiently broad to evaluate PCUDA with common benchmark applications.

In Figure 9, performance comparisons can be seen between CUDA code compiled with AdaptiveCpp’s
PCUDA support, and SYCL versions of the same application as compiled by AdaptiveCpp.
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Note that the PCUDA results were obtained with the original CUDA versions of the code; changes were
limited to enabling AdaptiveCpp in the build system and in one case, to fix a bug that was not noticed when
compiling with nvcc (CloverLeaf pessimistic performance using function pointers unnecessarily).

These results were obtained on NVIDIA RTX A5000, AMD Radeon Pro VII, and Intel UHD 630 respectively.
The performance numbers are normalized to the native model and native compiler on the platform, i.e.
nvcc-compiled CUDA, hipcc-compiled HIP, and oneAPI icpx-compiled SYCL.
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Figure 9: Performance comparison of PCUDA and SYCL code

As can be seen, performance of PCUDA and SYCL mostly match. In cases where differences were found,
those could typically be traced back to differences in how well the different ports of the application used
language features. For example, miniBUDE does not utilize local memory the same way in its CUDA port
compared to SYCL. The close match in performance indicates that there is no inherent performance penalty
due to the SYCL abstractions. Similarly, it shows that PCUDA is just as efficiently as SYCL — both typically

outperform vendor compilers. This also implies that existing CUDA applications might see speedups by
recompiling them with AdaptiveCpp PCUDA.
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This deliverable concludes the work done in “Task 4.2: Compiler with auto vectorization” of WP4 in
SYCLOPS project. We have made substantial improvements in both DPC++ and AdaptiveCPP compiler
toolchains.

5. Conclusion

On the DPC++ front, we have established mature compiler support targeting RISC-V via the oneAPI
Construction Kit and DPC++ projects. This enables standards-based acceleration via OpenCL and SYCL
on RISC-V platforms. The latest version of LLVM was integrated to take advantage of most recent RISC-
VIRVV support. This capability is demonstrated through public continuous integration test jobs visible on
the OCK GitHub which show the SYCL/OpenCL conformance status on RISC-V.

Over the course of the project, significant improvements have also been made to AdaptiveCpp. These
include a new OpenCL backend with the associated support both in the compiler and runtime and the
maturing of the generic JIT compilation infrastructure that was still new at the beginning of the project.
Furthermore, the compiler and runtime stack were optimized extensively, particularly by leveraging
opportunities at JIT-time to the point where AdaptiveCpp typically outperforms vendor compilers. Support
for PCUDA as an additional programming model simplifies porting code to SYCL, broadens use cases for
AdaptiveCpp, and enables more programmer flexibility with respect to the development process.

We have integrated both compilers and performed preliminary evaluation using v2.0 of SYCLOPS EMDC
platform as described in deliverable D3.2. All the work done on our compilers have already been made
publicly available in their respective Github repositories mentioned in this document. We have also
disseminated our work via technical blogs on OCK and AdaptiveCpp on the SYCLOPS website, and
technical talks that can be found in the SYCLOPS YouTube channel.
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