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Executive Summary 

This deliverable outlines the work done in “Task 4.1: Compiler support for RISC-V” in WP4 of the SYCLOPS 

project. The central objective of this task was developing SYCL compilers to facilitate the execution of SYCL 

applications on RISC-V and other accelerators provided by the SYCLOPS infrastructure layer. This has 

been achieved with significant improvements in the two compiler toolchains developed in SYCLOPS, 

namely, DPC++ and AdaptiveCPP. 

On the DPC++ front, DPC++ and oneAPI Construction Kit were adapted to support both native building and 

cross-compilation for RISC-V platforms. Integration with the latest LLVM and OCK compiler pipeline 

enabled support for RISC-V Vector extensions version 1.0 (RVV 1.0), ensuring SYCLOPS use cases are 

deployable on RVV targets like the A730 core deployed in SYCLOPS EMDC v2.0. oneTBB was successfully 

integrated into the DPC++ NativeCPU device, allowing for powerful thread scheduling with NUMA support 

on multi-socket CPU platforms. 

On the AdaptiveCPP front, generic Single-Pass (SSCP) JIT compiler, which is now the default, was 

substantially improved. This unified infrastructure allows a single compilation to generate a binary capable 

of dispatching to various devices (AMD GPUs, NVIDIA GPUs, and SPIR-V for OpenCL/RISC-V/OCK), 

making AdaptiveCpp the only SYCL implementation with this unified JIT compilation capability. A crucial 

new OpenCL runtime backend was added to AdaptiveCpp to target OpenCL devices using SPIR-V, 

enabling compatibility with the oneAPI Construction Kit required for RISC-V hardware. Extensive JIT-time 

optimizations were introduced, including a unified two-level kernel cache and the introduction of adaptivity 

levels. By leveraging these JIT-time opportunities, AdaptiveCpp was optimized to the point where it typically 

outperforms vendor compilers (e.g., outperforming CUDA by 30% and oneAPI by 23% in geometric mean). 

Finally, AdaptiveCpp 25.02 introduced PCUDA, an implementation of the CUDA and HIP programming 

languages within the generic JIT compiler. This allows for mixing SYCL and CUDA/HIP code while retaining 

the full cross-architecture portability of AdaptiveCpp's SYCL compilation. 
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1. Introduction 

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer, (ii) 

platform layer, and (iii) application libraries and tools layer. 

 

Figure 1. SYCLOPS architecture 

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and provides 

heterogeneous hardware with a wide range of accelerators from several vendors. 

Platform layer: The platform layer, provides the software required to compile, execute, and interpret SYCL 

applications over processors in the infrastructure layer. The second layer from the bottom, the platform 

layer, provides the software required to compile, execute, and interpret SYCL applications over processors 

in the infrastructure layer. SYCLOPS will contain oneAPI DPC++ compiler from CPLAY, and AdaptiveCpp, 

formerly known as hipSYCL, an open-source SYCL compiler toolchain from UHEI. In terms of SYCL 

interpreters, SYCLOPS will contain Cling from CERN. 

Application libraries and tools layer: The libraries layer enables API-based programming by providing 

pre-designed, tuned libraries for various deep learning methods for the PointNet autonomous systems use 

case (SYCL-DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel 

algorithms for scalable genomic analysis (SYCL-GAL).  

This deliverable concerns the SYCL compilers part of the stack as highlighted in Figure 1, and covers the 

work done on the two compiler toolchains in the context of “Task 4.1: Compiler support for RISC-V” in WP4 

(M3-M33). This deliverable is a summary of this work with a special focus on (i) support for RISC-V vector 

hardware available in the SYCLOPS platform at M33 especially the oneAPI Construction Kit, and (ii) support 

for other advanced functionalities that can support applications beyond the scope of SYCLOPS. All 

functionalities described in this deliverable have already been merged and integrated in several public 

releases of DPC++ and AdaptiveCpp that have been made during the project. Both compiler toolchains are 

available as open source software for maximal transparency, reproducibility and maintainability. 

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level overview of the 

overall SYCLOPS architecture and positions this deliverable with respect to both components in the 

SYCLOPS stack and WP/tasks in the work plan. Section 2 describes updates to DPC++ and oneAPI. 

Section 3 describes updates to AdaptiveCpp. 
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2. DPC++ and oneAPI Construction Kit 

After the official launch of project SYCLOPS, Intel acquired our partner CPLAY. As a result, CPLAY’s 

proprietary ACORAN ComputeCPP compiler, originally described in the SYCLOPS proposal, was 

discontinued. It has since been replaced with the open-source DPC++ compiler, which now serves as one 

of the SYCL implementations used within SYCLOPS. DPC++ is a modern, open-source SYCL compiler and 

runtime supported by a significantly larger developer and user community. Together, DPC++ and SYCL 

form the foundation of oneAPI—an open, cross-architecture programming model that enables developers 

to maintain a single codebase across diverse accelerator platforms such as GPUs and FPGAs. 

With the rapid growth of AI adoption, hardware vendors increasingly design specialized AI processors 

optimized for inference and/or training, delivering better efficiency than standard off-the-shelf hardware. 

However, these custom processors often present challenges for developers, as they typically require porting 

software to proprietary and non-standard programming models. To address this, CPLAY developed the 

oneAPI Construction Kit (OCK), which extends the benefits of oneAPI and SYCL to new and custom 

hardware. OCK evolved from ComputeAorta—part of the ACORAN toolchain originally created by CPLAY—

and is designed to unlock the full performance of heterogeneous hardware while providing developers with 

standards-compliant interfaces. 

The following diagram shows how OCK currently makes it possible to add new devices so that they can 

make use of the DPC++ SYCL compiler. 

 

Figure 2: Components of the oneAPI construction kit 

In deliverable “D4.1: RISC-V Compiler Backends”, we presented the work done in M1—M18 in using the 

oneAPI construction Kit to support the RISC-V platforms that were deployed in EMDC v1.0 of SYCLOPS 

project at M18. In the following period M18-M33, oneAPI construction Kit and DPC++ have been extended 

in several ways.  

First, the compilation process has been simplified to enable build of oneAPI construction Kit and DPC++ 

natively on RISC-V platforms. This was successfully tested on the MilkV RISC-V board hosted by 

EURECOM. Both projects have also been adapted to enable them to be cross-compiled for RISC-V to 

enable powerful build machines to compile RISC-V SYCL/OpenCL applications.  
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Second, to document the current status of the compiler support on RISC-V we have created public 

continuous integration test jobs on the oneAPI Construction Kit (OCK) Github 

(https://github.com/uxlfoundation/oneapi-construction-kit) for building and running the OpenCL and SYCL 

Conformance Test Suite (CTS) on RISC-V. The SYCL CTS is built (cross-compiled) and run via two targets: 

1) the Native CPU target and 2) OpenCL where the OpenCL driver was built from OCK. This CI runs daily. 

For example, the log of the complete CI run from 29th July 2025 can be found at the following location: 

https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958 

The following figure shows a snapshot of the SYCL_CTS run on RISC-V via NativeCPU (top right) and via 

OCK OpenCL (bottom right). 

 

Figure 3: Snapshot of SYCL_CTS run on RISC-V via NativeCPU 

Note that SYCL_CTS run via OpenCL is significantly slower than via Native CPU. This is because the 

OpenCL driver compiles the kernels at run-time, which is particularly slow in the current setup as the 

compiler runs on QEMU. This can be mitigated by adding a self-hosted github runner that uses a more 

powerful RISC-V device to build and run the kernels. The OpenCL CTS SYCL CTS 

(https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958/job/46986601757) 

pass rate on RISC-V is 100% (Note some tests were skipped due to missing capabilities of the RISC-V 

platform). The SYCL-CTS pass rate on RISC-V via 1) OpenCL is 99.7% 

https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958/job/46990593490 and 

2) with NativeCPU 93.9% https://github.com/uxlfoundation/oneapi-construction-

kit/actions/runs/16605113958/job/46990670653.  

Third, we have integrated DPC++ with the latest the latest LLVM version to take advantage of the most 

recent RISC-V code generation improvements. Similarly, the NativeCPU device in DPC++ integrates the 

oneAPI Construction Kit compiler pipeline to take advantage of code transformations. oneTBB has been 

successfully integrated into the DPC++ NativeCPU device and tested on RISC-V. The net result of all this 

work is that we can now perform powerful thread scheduling with NUMA support, which benefits all 

SYCLOPS use cases and beyond on platforms with multiple CPU sockets, like the MilkV RISC-V board 

deployed at EURECOM. 

Fourth, and most importantly, RISC-V Vector extensions version 1.0 has been enabled and tested in CI 
jobs mentioned previously. This will enable the  OCK OpenCL driver and the OCK compiler pipeline within 
NativeCPU device to produce RVV1.0. We merged various PRs with fixes and updates to the OCK 
vectorizer targeting RISC-V (including issues exposed by using –march options). Through this work, we 
enable all SYCLOPS use cases to be deployable on RVV targets, like the updated A730 core provided by 
our partner CSIP that has been deployed at EURECOM as a part of EMDC v2.0 and described in deliverable 
“D3.2: EMDC v2.0 with RVV accelerator release”. Experimental results evaluating and validating DPC++ 
on EMDC v2.0 are also described in deliverable D3.2. 
 

https://github.com/uxlfoundation/oneapi-construction-kit
https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958
https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958/job/46986601757
https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958/job/46990593490
https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958/job/46990670653
https://github.com/uxlfoundation/oneapi-construction-kit/actions/runs/16605113958/job/46990670653


 

Copyright  2023 SYCLOPS | DELIVERABLE 4.2 – Compiler with auto vectorization                                      Page 10 of 22 

3. AdaptiveCPP 

During the project time frame, a number of important changes were introduced to facilitate RISC-V 

support, and to improve the supporting compiler and runtime infrastructure in general. 

Firstly, the hipSYCL project was renamed to AdaptiveCpp to better reflect the broadened focus of the 

project, since the old name was frequently misinterpreted as a focus on AMD hardware. This renaming was 

positively received. For example, the rate in which the project received stars on github (this roughly 

corresponds to github users marking a project as interesting to them) increased noticeably after the old 

name was abandoned in early 2023. This is illustrated in the figure below. 

Figure 4: Github stars for AdaptiveCpp repo 

On the technical side, substantial changes were introduced. Because the strategy for targeting RISC-V 

hardware relies on targeting Codeplay’s oneAPI construction kit, AdaptiveCpp needed to be able to target 

OpenCL devices using SPIR-V, as this is how the oneAPI construction kit operates. 

AdaptiveCpp supports a generic single-pass (SSCP) JIT compiler. This compiler embeds the device code 

at compile time as generic intermediate representation (IR) of the LLVM compiler infrastructure. At runtime, 

it can then generate amdgcn code for AMD GPUs, PTX code for NVIDIA GPUs, and SPIR-V for OpenCL 

devices (e.g. Intel GPUs or RISC-V). Recently, an additional backend was added to target the native host 

CPU. This design has the advantage that a single compilation can generate a binary that can dispatch to 

all of the devices supported by AdaptiveCpp, depending on what is found on the system. 

AdaptiveCpp is the only SYCL implementation that can generate code for all these devices with a unified 

JIT compilation infrastructure. 

Releases 

Within the project time frame, there have been two releases: 

• AdaptiveCpp 23.10 (Full release details: 

https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v23.10.0) 

• AdaptiveCpp 24.02 (Full release details: 

https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.02.0) 

• AdaptiveCpp 24.06 (Full release details: 

https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.06.0) 

• AdaptiveCpp 24.10 (Full release details: 

https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.10.0) 

• AdaptiveCpp 25.02 (Full release details: 

https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v25.02.0) 

https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.02.0
https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.06.0
https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.10.0
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AdaptiveCpp 25.10 is scheduled to be released later this year in October. In order to better structure 

development and provide stronger guarantees for users, a fixed regular release schedule was adopted. 

AdaptiveCpp was routinely presented, e.g. in tutorials at conferences (often as part of broader SYCL 

tutorials) such as at IWOCL’ 23, IWOCL ‘24, IWOCL ‘25, ISC ‘23, ISC ‘24 as well as in dedicated talks, e.g. 

at PASC ‘24 [6] . 

The International Workshop on OpenCL and SYCL ‘25 (IWOCL ‘25) was also hosted by our team at 

Heidelberg University. 

1.1 OpenCL Runtime Backend 

While the generic JIT compiler was already available at the beginning of the project, it was still experimental 

and did not yet support OpenCL. 

AdaptiveCpp has a modular C++ interface for backends. Therefore, adding new runtime backends is fairly 

straight-forward as it mainly requires implementing these interfaces. We have thus added a new OpenCL 

runtime backend, which has since been shown to perform well (see e.g. for performance on Intel GPUs with 

OpenCL [1]). 

Our publication on SYCL-Bench 2020 [2] contains microbenchmarks on some aspects of the runtime. For 

example, Figure 5 shown below (taken from [2]) shows the task scheduling latency for 50000 kernel 

launches on various hardware – the data on the Intel Max 1100 GPU was obtained using the new OpenCL 

backend. For the more modern USM memory management API in SYCL, AdaptiveCpp’s OpenCL backend 

even outperforms the Intel oneAPI DPC++ compiler on the Intel GPU. Note that the data for the AMD MI100 

GPU in the DPC++ case is missing due to excessive runtime. 

Apart from the AMD case, AdaptiveCpp and oneAPI DPC++ perform similarly for this workload. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Task scheduling latency on various hardware 

1.1.1 Code generation 

SPIR-V generation through the generic JIT compiler is a complex process that was substantially improved 

and optimized over the course of the project. The original design of our compiler can be found in [3]. 

Firstly, SYCL features were implemented that at the start of the project were still missing in the generic 

JIT compiler. This in particular affects atomics, group algorithms and the SYCL 2020 reduction interface. 
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Figure 6: Task scheduling latency on various hardware  

Atomics in the generic JIT compiler are implemented using a built-in interface that is implemented in 

backend-specific LLVM bit code libraries. Compare-and-swap loops as emulations of atomics are only used 

in cases where there is no native backend functionality to represent an atomic operation. 

Figure 6 shown above (again taken from our paper [2]) shows microbenchmark results using the atomic 

test from SYCL-Bench 2020. The SSCP results refer to our new generic JIT compiler, and the SMCP results, 

where available, to our old compiler. As can be seen, the atomic implementation in the generic JIT compiler 

behaves very similarly compared to either DPC++ or our old (non-SPIR-V capable) compilers. 

The SYCL 2020 reduction interface defines a flexible API that allows specifying reductions over arbitrary 

types (including user-defined types) and arbitrary reduction operators, as long as they are associative. This 

also include cases where no identity for the reduction is known. 

This generality makes reductions challenging to implement, and to optimize. We have added an 

implementation that supports arbitrary data types and arbitrary reduction operators. Additionally, it employs 

an efficient caching scheme for scratch allocations that might be needed. Additional optimizations include 

assigning multiple reduction elements to each SYCL work item to better utilize memory bandwidth, as well 

backend-specific code paths. In particular, when running on the CPU, a different memory access pattern is 

employed. With the BabelStream benchmark, we find that our reduction implementation delivers 

performance in line with other compilers and programming models for the same problem, and in line with 

the hardware’s memory bandwidth. 

In the original implementation of the generic JIT compiler, the -ffast-math optimization flag was not yet 

correctly exploited. This flag is commonly used by applications which prefer speed over accuracy. 

We have thus added proper fast-math handling, which includes a) relaxing numerical requirements when 

compiling user code and b) linking against bitcode libraries providing e.g. math builtins that employ similar 

optimizations. Furthermore, the default floating point model of the compiler was aligned to the defaults of 

other heterogeneous compilers (e.g. AMD’s HIP compiler or DPC++) and now uses the clang option -ffp-

contract=fast by default. This can result in a noticeable performance increase for applications not requesting 

a specific floating point model at compile time. 

With the release of AdaptiveCpp 24.02, the generic JIT compiler was elevated to be the default compiler of 

AdaptiveCpp. This means that a simple compiler invocation (e.g. acpp -o test test.cpp) will by default 

generate a binary that can dispatch kernels to the host CPU, NVIDIA GPUs, AMD GPUs, Intel GPUs, as 

well as the oneAPI construction kit, and thus RISC-V hardware. 
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1.2 Adaptivity and JIT-time optimizations 

The AdaptiveCpp generic JIT compiler lowers and optimizes LLVM IR at runtime for the target backends. 

This opens the door for a wide array of runtime optimizations, but can cause additional overheads compared 

to directly generating e.g. SPIR-V at compile time. To mitigate this, AdaptiveCpp 24.02 has introduced a 

unified kernel cache across backends, with a persistent second-level cache on disk. To enable this two-

level cache system, a new mechanism of uniquely identifying kernels was introduced: A 128-bit hash 

generated from all of configuration parameters specifying the current JIT compilation, such as target 

backend, device and target architecture, the translation unit that the kernel originates from, the kernel name, 

and others. Especially for future application runs, the persistent cache mitigates the impact of the additional 

step of processing the LLVM IR, which other compilers do not have to do.  

With a JIT compiler, it is in principle possible to perform optimizations that are impossible in a static 

compilation model, since a JIT compiler can take into account information only known at runtime. A 

downside of performing such JIT-time optimizations is however that it might lead to additional JIT 

compilations. 

With JIT overheads having been mitigated as a concern with the persistent cache, we have decided to 

implement additional JIT-time optimizations that are not commonly done by default in other production 

compilers. To this end, we have introduced the ACPP_ADAPTIVITY_LEVEL environment variable, which 

can be interpreted as a runtime optimization level: If the adaptivity level is 0, it will not perform any additional 

optimizations, trying to avoid additional JIT compilation steps. If the adaptivity level is 1, a set of 

optimizations is enabled that typically do not require many additional kernels to be generated and are thus 

relatively risk-free. This includes hardwiring the kernel work group size as a constant in the code, and also 

informing the backend optimizer about the kernel work group size, which can help register scheduling. Other 

optimizations include the detection of whether the problem size fits in 32-bit integers, and if so, not carrying 

out calculations e.g. to determine the global id of a work item in 64-bit. 

The performance results in Figure 7 below show the performance improvements on NVIDIA, AMD and 

Intel that were achieved from the combined effect of the previously mentioned improvements at the time 

of the AdaptiveCpp 24.02 release, compared to the previous version 23.10. DPC++ results are provided 

as reference as well. As can be seen from these results, the performance increase from AdaptiveCpp 

23.10 to 24.02 is noticeable on all backends, and it competes very well with DPC++. 
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Figure 7: Performance results on NVIDIA, AMD, and Intel hardware 

After the release of AdaptiveCpp 24.02, we have also started to introduce the first optimizations for a more 

aggressive setting of an adaptivity level of 2. At a level of 2, AdaptiveCpp is free to employ optimizations 

that are expected to come with additional JIT costs, kernel launch latencies or might need more application 

runs to achieve peak performance. 

At this setting, AdaptiveCpp will analyze at runtime the usage patterns of arguments that get passed into 

kernels. If it detects that specific values are commonly used as arguments, it hardwires them as constants 

at JIT-time, compiling a new, specialized kernel. Because the LLVM optimization pipeline is only run after 

this process, the value will be propagated as a constant throughout the code, which could lead e.g. to dead 

code elimination or reduced register usage. This idea is similar to specialization constants from the SYCL 

2020 specification, except that it happens automatically. Effectively, this feature enables not only constant 

propagation across the host-device boundary, but also the propagation of runtime values which are de-facto 

constants into device code as constants. 

The detection of these common kernel arguments is enabled by storing a persistent, application-specific 

database containing statistical information on kernel invocations and kernel arguments on disk. Kernels are 

again identified using the 128-bit hash of the kernel configuration. This allows AdaptiveCpp to learn across 

multiple application runs which kernel argument values might be worth JIT-compiling a dedicated kernel for. 

Because it is in general impractical to store data on every different value that has ever been passed into 

the kernel, heuristics are employed to evict information on kernel arguments that have not been used in a 

while from the database. 
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This feature is now mature as of AdaptiveCpp 25.02. Performance-wise, the benefit of this feature seems 

to highly depend on the code and the target hardware. We see benefits especially for compute-bound 

applications, e.g. miniBUDE improving performance by ~10% on NVIDIA or ~30% on an Intel iGPU. 

Furthermore, we have introduced additional optimizations at adaptivity level 1. This includes e.g. the ability 

to take into account the alignment of input pointers for kernels, and to automatically detect cases where 

input pointers don’t alias. To this end, the AdaptiveCpp JIT compiler attempts to prove that a kernel does 

not perform indirect access, i.e. does not load pointers from memory. If no indirect access is present, then 

the set of allocations passed through kernel pointer arguments are all allocations that the kernel can access. 

If the allocation referred to by one pointer kernel argument is not referred to by any other pointer kernel 

argument, then the compiler can safely assume that no aliasing takes place. This has far-reaching 

consequences, and can allow the optimizer to reorder loads and stores, or cache loads etc. 

In 2025, we have published a comprehensive description and evaluation of the adaptivity framework [4]. 

Figure 8 below from the publication shows the obtained results using the latest set of optimizations on 

NVIDIA RTX A500, AMD Radeon Pro VII and Intel UHD 630 respectively using a recent version of 

AdaptiveCpp. Results are normalized to the vendor native programming model and compiler (nvcc-compiled 

CUDA, hipcc-compiled HIP, icpx-compiled oneAPI). 
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Figure 8: Performance results on NVIDIA, AMD, and Intel hardware 

As can be seen, AdaptiveCpp typically outperforms vendor compilers. CUDA is outperformed by 30% in the 

geometric mean, and HIP and oneAPI by 44% and 23%, respectively. Potential JIT-overheads were 

investigated in detail, and were found to not play a role in typical cases and use cases (see [4] for details). 

This is primarily because of the effectiveness of the design of the JIT-cache, and because the optimizations 

are selected carefully so that they don’t typically result in excessive amounts of generated kernels. In fact, 

for the investigated benchmarks we find that the amount of generated kernels stays the exactly same in 

almost all cases – therefore, the JIT-optimizations do not result in more overhead than any other JIT-based 

compiler that does not leverage such techniques. 

1.3 User-driven runtime modification of kernels 

In addition to these automatic JIT optimizations, we have also introduced APIs to leverage the JIT compiler 

more explicitly. This is targeted at users who wish more control for optimizations. 

Firstly, wrapping a kernel argument in a new sycl::specialized type is interpreted as a hint to the runtime to 

generate a new kernel that has the value of this argument hardwired as a constant. This is a very similar 

use case as the SYCL 2020 specialization constant API. However, our API was developed to address 

shortcomings of the API in the SYCL specification: 

• The SYCL API requires explicit get and set calls to set and retrieve and set the value, and all 

accesses need to be funneled through an additional kernel_handler argument that is passed to the 

kernel. This design makes it cumbersome both for the user to use and for the implementer to 

implement; 

• Whenever a JIT compiler is unavailable (e.g. in an ahead-of-time compilation scenario) 

specialization constant support must be emulated. The additional indirection through the 

kernel_handler object can in this case lead to substantial performance overheads, especially since 

specialization constants are typically used in the hottest parts of the code. 

Our sycl::specialized extension avoids both problems: It is very convenient and easy to use, and, if no JIT 

compiler is available, it incurs no additional overhead compared to a regular kernel argument. This 

extension has been presented in the Khronos SYCL working group for potential standardization in the 

future. 

The second feature to expose the JIT compiler to users that we have added is the experimental ability to 

modify function calls at runtime. Users can at runtime instruct the JIT compiler to replace calls to a function 

A with another function B, or replace all calls to function A with a call sequence to other functions B and C. 

Once the calls have been replaced, there is no overhead compared to a regular function call. 
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This feature, which we call “dynamic functions”, effectively allows for a runtime assembly of kernels. Users 

can use it to implement a form of JIT-time polymorphism, where kernel behaviour needs to change based 

on runtime values. Since function calls can also be replaced by call sequences to other kernels, kernel-

fusion-like semantics are also possible. This feature is currently available in an experimental state for users 

to evaluate. 

1.4 AdaptiveCpp Portable CUDA (PCUDA) 

Another feature that was added recently and released as part of AdaptiveCpp 25.02 is portable CUDA 

(PCUDA). PCUDA is an implementation of (a slight dialect of) the CUDA and HIP programming languages 

in the AdaptiveCpp generic JIT compiler. This allows users to mix-and-match SYCL code with CUDA (or 

HIP) code e.g. for the purpose of simplified, iterative porting. Because the CUDA code is compiled by our 

generic JIT compiler, the resulting program is just as portable as SYCL code compiled by AdaptiveCpp. 

This has multiple benefits: 

1. Code can be ported iteratively to SYCL; highly-optimized complex parts written in CUDA could also 

be left as-is to avoid risk; 

2. Existing CUDA or HIP code might run on other hardware with no or little changes; 

3. When making comparisons between CUDA and SYCL (e.g. performance or compile-time), it allows 

for fairer comparisons. Currently, such comparisons require changing multiple variables – input 

program, programming model and compiler. With PCUDA, the compiler can be kept the same 

between, thus simplifying distinguishing between effects due to different compilers, and effects due 

to the programming model or different code quality of the CUDA/SYCL ports of the input code. 

To this end, support for key syntactic constructs in CUDA and HIP was added to AdaptiveCpp’s generic JIT 

compiler, and an implementation of the CUDA/HIP runtime was added to AdaptiveCpp, with interoperability 

with SYCL. 

CUDA and HIP mostly differ from each other based on the naming scheme for runtime functions: CUDA 

functions are prefixed with cuda while HIP functions are prefixed with hip. PCUDA supports both naming 

schemes, depending on whether the CUDA or HIP headers are included. 

Compilers that can compile CUDA or HIP code for other hardware already exist (e.g. the chipStar project). 

However, there no other solution to our knowledge currently provides full interoperability with SYCL on both 

a source and runtime level, and also enables the same portability as AdaptiveCpp’s SYCL support: Running 

kernels on CPUs, Intel GPUs, NVIDIA GPUs and AMD GPUs from a single binary. 

There are some subtle differences between CUDA/HIP and PCUDA, which is why we generally call PCUDA 

a CUDA dialect. These differences are mostly related to the different compiler designs. NVIDIA’s nvcc 

compiler is an ahead-of-time compiler with distinct host and device passes, while AdaptiveCpp is a JIT 

design with unified host-device compiler. AMD’s hipcc is similar in this respect to nvcc. These differences 

necessitate some divergence e.g. in how code paths can be specialized for different targets. 

In nvcc’s CUDA, this can be accomplished by checking target macros defined by the compiler due to its 

ahead-of-time design. In a JIT-design however, it is generally not known on which hardware the code will 

be run until JIT compilation is triggered at runtime. Therefore, target macros cannot be available. Instead, 

AdaptiveCpp has a JIT-reflection mechanism that operates as part of control flow. We note that NVIDIA’s 

nvc++ uses similar mechanisms. A detailed discussion on how PCUDA diverges from CUDA or HIP can be 

found in the AdaptiveCpp documentation [5]. 

PCUDA is a very recent feature, therefore the list of supported CUDA APIs is still limited. However, support 

is sufficiently broad to evaluate PCUDA with common benchmark applications.  

In Figure 9, performance comparisons can be seen between CUDA code compiled with AdaptiveCpp’s 

PCUDA support, and SYCL versions of the same application as compiled by AdaptiveCpp. 
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Note that the PCUDA results were obtained with the original CUDA versions of the code; changes were 

limited to enabling AdaptiveCpp in the build system and in one case, to fix a bug that was not noticed when 

compiling with nvcc (CloverLeaf pessimistic performance using function pointers unnecessarily). 

These results were obtained on NVIDIA RTX A5000, AMD Radeon Pro VII, and Intel UHD 630 respectively. 

The performance numbers are normalized to the native model and native compiler on the platform, i.e. 

nvcc-compiled CUDA, hipcc-compiled HIP, and oneAPI icpx-compiled SYCL. 
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Figure 9: Performance comparison of PCUDA and SYCL code 

As can be seen, performance of PCUDA and SYCL mostly match. In cases where differences were found, 

those could typically be traced back to differences in how well the different ports of the application used 

language features. For example, miniBUDE does not utilize local memory the same way in its CUDA port 

compared to SYCL. The close match in performance indicates that there is no inherent performance penalty 

due to the SYCL abstractions. Similarly, it shows that PCUDA is just as efficiently as SYCL – both typically 

outperform vendor compilers. This also implies that existing CUDA applications might see speedups by 

recompiling them with AdaptiveCpp PCUDA. 
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5. Conclusion 

This deliverable concludes the work done in “Task 4.2: Compiler with auto vectorization” of WP4 in 

SYCLOPS project. We have made substantial improvements in both DPC++ and AdaptiveCPP compiler 

toolchains. 

On the DPC++ front, we have established mature compiler support targeting RISC-V via the oneAPI 

Construction Kit and DPC++ projects. This enables standards-based acceleration via OpenCL and SYCL 

on RISC-V platforms. The latest version of LLVM was integrated to take advantage of most recent RISC-

V/RVV support.  This capability is demonstrated through public continuous integration test jobs visible on 

the OCK GitHub which show the SYCL/OpenCL conformance status on RISC-V.   

Over the course of the project, significant improvements have also been made to AdaptiveCpp. These 

include a new OpenCL backend with the associated support both in the compiler and runtime and the 

maturing of the generic JIT compilation infrastructure that was still new at the beginning of the project. 

Furthermore, the compiler and runtime stack were optimized extensively, particularly by leveraging 

opportunities at JIT-time to the point where AdaptiveCpp typically outperforms vendor compilers. Support 

for PCUDA as an additional programming model simplifies porting code to SYCL, broadens use cases for 

AdaptiveCpp, and enables more programmer flexibility with respect to the development process. 

We have integrated both compilers and performed preliminary evaluation using v2.0 of SYCLOPS EMDC 

platform as described in deliverable D3.2. All the work done on our compilers have already been made 

publicly available in their respective Github repositories mentioned in this document. We have also 

disseminated our work via technical blogs on OCK and AdaptiveCpp on the SYCLOPS website, and 

technical talks that can be found in the SYCLOPS YouTube channel. 

https://www.syclops.org/updates/
https://www.youtube.com/@syclopseu
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