SYCLOPS

Deliverable . - SYCL

Interpreter

EURECOM

N This project has received funding from the European
S Union’s HE research and innovation programme under
*ox grant agreement No 101092877

%) SYCLOPS

%) SYCLOPS

Project acronym:
Project full title:

Call identifier:

Type of action:

Start date:

End date:

Grant agreement no:

SYCLOPS

Scaling extreme analYtics with Cross architecture
accelLeration based on OPen Standards

HORIZON-CL4-2022-DATA-01-05
RIA

01/01/2023

31/12/2025

101092877

Executive Summary:

WP:

Author(s):

Editor:

Leading Partner:
Participating Partners:
Version:

Deliverable Type:

Official Submission
Date:

D4.4 - SYCL interpreter

This deliverable presents the work carried out to enable interactive
SYCL execution within the ROOT’s interpreter Cling, detailing the
modernization of the interpreter (LLVM-18 upgrade, new pass
manager, plugin infrastructure) and demonstrations of speedup over
CPU-only execution. All the contributions are publicly available in
ROOT (through corresponding PRs)

4
Devaijith Valaparambil Sreeramaswamy

Raja Appuswamy

CERN

1.0 Status: Draft
Other Dissemination Level: PU
06-Oct-2025 Actual Submission 30-Sep-2025

Date:

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter

Page 1 of 16

%) SYCLOPS
Disclaimer

This document contains material, which is the copyright of certain SYCLOPS contractors, and may not
be reproduced or copied without permission. All SYCLOPS consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information
contained in this document may require a license from the proprietor of that information. The
reproduction of this document or of parts of it requires an agreement with the proprietor of that
information.

The SYCLOPS consortium consists of the following partners:

Partner Organisation Name Partner Organisation Short Country
Name
1 EURECOM EUR FR
2 INESC ID - INSTITUTO DE INESC PT
ENGENHARIADE
SISTEMAS E COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA
3 RUPRECHT-KARLS- UHEI DE
UNIVERSITAET HEIDELBERG
4 ORGANISATION EUROPEENNE CERN CH
POUR LA RECHERCHE
NUCLEAIRE
5 HIRO MICRODATACENTERS B.V. HIRO NL
6 ACCELOM ACC FR
7 CODASIPSRO CsIP Cz
8 CODEPLAY SOFTWARE LIMITED CPLAY UK

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 2 of 16

%) SYCLOPS

Document Revision History

Version Description Contributions

0.1 Initial draft EUR
0.2 Technical update CERN
1.0 Final draft EUR
Authors
Author Partner
Devaijith Valaparambil CERN
Sreeramaswamy
Reviewers

Name Organisation

Aleksandar llic INESC
Vincent Heuveline UHEI
Danilo Piparo CERN
Nimisha Chaturvedi ACC
Martin Bozek CSIP

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 3 of 16

%) SYCLOPS

Table of Contents

I 1 11 (0T [[1 [PRSP 6
2 BACKGIOUNG ... ettt 7
2.1 ROOT and Cling at CERNooiiiiiii i e e e e e e e 7
2 YL 1V (O I T 1 1 [o TR 8
3 Foundations for Interactive SYCL iN ROOTcooiiiiiiiii e 9
3.1 Migration to the new LLVM Pass ManNaAQEerccciivuiiiiiiiiie et 9
KT o [¥ o T g TR0 o] oo AT T4 1 T 9
3.3 LLVM L8 UPGIaUe ...t 9
3.4 Alignment With Clang-repl..........oouuiii i e 9
4 Integrating AdaptiveCpp in the INtErpreter. ... e 10
4.1 Plugin-based INtEGIrationccoiiiiiiiiiiiii e 10
4.2 SEAtIC INTEGIALIONccii i 10
4.3 AdaptiveCpp ChallENQEScooiiiiei e 10
4.4 Backends and PlatformsS.........coooiiiiiiiiii 10
4.5 Evaluation and testing of SYCL-enabled ROOT/CIINGccccvvviiiiiiiiiiiiiiiiiiiiiiiiieeee, 11
4.6 Repository and PR SUMMATYuiiiiieee ettt e e e e e e e na e e e 12
oy A © T To o1 1o o] QR 13
LS S O o] od U1 T} o PR 14

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 4 of 16

%) SYCLOPS

This deliverable presents the work carried out to enable interactive SYCL execution within the ROOT’s
interpreter, Cling, as part of the Task 4.4 in WP4 of the SYCLOPS project. The goal is to make SYCL
kernels executable directly in ROOT, both at the command line and within Jupyter notebooks, thereby
combining the portability of SYCL with the interactive analysis capabilities of ROOT.

Executive Summary

To achieve this, significant modernization of Cling was required. The interpreter has been updated to
LLVM 18, migrated to the new pass manager, and extended with plugin infrastructure so that compiler
passes from external projects such as AdaptiveCpp can run seamlessly within Cling. These changes not
only support SYCL integration but also reduce technical debt, align Cling more closely with upstream
clang-repl, and ensure long-term maintainability.

On top of these foundations, the AdaptiveCpp SYCL implementation was integrated with Cling. This
enables users to define, compile, and execute SYCL kernels interactively, with support validated on both
the OpenMP (CPU) and CUDA (NVIDIA GPU) backends. The same SYCL code runs without modification
across these backends, providing a portable and user-friendly workflow. Demonstrations were performed
in both in ROOT and Jupyter notebooks, illustrating the interactive, exploratory analysis style central to
ROOT.

Preliminary performance evaluations show clear benefits, showing both acceleration and portability across
devices without changes to application logic.

All contributions are publicly available in the ROOT and AdaptiveCpp Github repositories through the
corresponding pull requests. The current implementation is marked experimental in ROOT, with Linux as
the primary supported platform.

This work establishes the technical foundation for SYCL-enabled interactive analysis in ROOT, opening
the door to heterogeneous computing workflows for high-energy physics and other data-intensive
domains.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 5 of 16

&) SYCLOPS

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer,
(i) platform layer, and (iii) application libraries and tools layer.

1 Introduction

:
: | Autonomous systems |

; | High-energy physics analysis | Applications

Precision oncology |

i o e e ey : TOOlS i

RISC-V
RVV accelerator

Figure 1. SYCLOPS architecture

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and
provides heterogeneous hardware with a wide range of accelerators from several vendors.

Platform layer: The second layer from the bottom, the platform layer, provides the software required to
compile, execute, and interpret SYCL applications over processors in the infrastructure layer. SYCLOPS
will contain oneAPI DPC++ compiler from CPLAY, and AdaptiveCpp from UHEI In terms of SYCL
interpreters, SYCLOPS will contain Cling from CERN.

Application libraries and tools layer: While the platform layer described above enables direct
programming in SYCL, the libraries layer enables API-based programming by providing pre-designed,
tuned libraries for various deep learning methods for the PointNet autonomous systems use case (SYCL-
DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel algorithms for
scalable genomic analysis (SYCL-GAL).

This deliverable presents the work carried out to enable SYCL Interpreter as highlighted in Figure 1 in
the context of “Task 4.4 SYCL interpreter” of the SYCLOPS project. The objective is to extend Cling -
ROOT’s C++ interpreter, with the ability to compile and execute SYCL kernels interactively, thereby
combining ROOT’s interactive analysis capabilities with SYCL’s portable heterogeneous programming
model. The deliverable situates this work within the broader SYCLOPS platform. ROOT and Cling
represent the interpreter layer of the SYCLOPS software stack, enabling end-users to interactively
develop, prototype, and validate algorithms. By integrating AdaptiveCpp into Cling, SYCLOPS provides a
new interpreted SYCL execution environment that directly supports exploratory analysis workflows on
CPUs and GPUs.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 6 of 16

n SYCLOPS

The Large Hadron Collider (LHC) at CERN has collected more than 2 Exabytes of data since 2010. With
the upcoming High-luminosity LHC, the data-rate is expected to increase by an order of magnitude. By
extending Cling, ROOT’s C++ interpreter to support a SYCL execution environment will provide a fast,
flexible and interactive tool to explore this data.

2 Background

Figure 2. Position of the LHC tunnel

2.1 ROOT and Cling at CERN

ROOT is an opensource-data analysis framework developed at CERN and is widely used among the HEP
community. It provides functionalities like data analysis, 1/O, visualization and much more and written in
C++ for high performance.

One of the core components of ROOT is Cling, a C++ interpreter built on top of LLVM/Clang. Before Cling,
the role of interpreter was served by CINT, developed in the 1970s for data access and evaluating simple
expressions. Over time, CINT evolved to support function evaluation and eventually code development.
This was highly convenient, as it was fast (requiring no linking) and enabled rapid prototyping of
algorithms, serving a path for interactive, exploration-driven development.

As CINT began to reach its limitations and C++ evolved rapidly, CERN and Fermilab developed Cling: a
C++ interpreter based on just-in-time (JIT) compilation using/extending the functionality provided by
LLVM/Clang, mapping the concept of an interpreter to a compiler (JIT). Cling can run interactively both in
a Jupyter Notebook and in the command line as a REPL (read-eval-print loop), as shown in Figure 3, and
it includes error recovery mechanisms to handle compile/runtime errors.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 7 of 16

%) SYCLOPS

I o S CLING S R I S S S

* Type C++ code and press enter to run it *
> Type .q to exit *
e R
[cling]$ int pizza = 10;

[cling]$ int coffee =3

(int) 3

[cling]$ int total = pizza+coffee;

[cling]$ tota
input_line 7:2:2: error: use of undeclared identifier 'tota'; did you mean 'tota
17

tota

total
input_line_6:2:6: 'total' declared here
int total = pizza+coffee;

~

[cling]$ total
(int) 13
[cling]$.q

dvalapar@pceprootf07:$% I

Figure 3. CLING (in a REPL environment)
2.2 Why SYCL in Cling?

By embedding SYCL execution capabilities directly in the interpreter, ROOT users gain:

1. The ability to prototype heterogenous algorithms on CPUs and GPUs.

2. Portable execution across multiple backend (OpenMP, CUDA, HIP, OpenCL) without changing
application logic.

3. Integration with ROOT’s analysis ecosystem and notebook-based workflows.

Within SYCLOPS, the platform layer includes two SYCL compiler toolchains: oneAPI DPC++ and
AdaptiveCpp (formerly hipSYCL). For the purposes of this work, AdaptiveCpp was selected because its
Clang/LLVM plugin model made it easier to integrate with Cling’s infrastructure.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 8 of 16

3

3.2

3.3

3.4

%) SYCLOPS

Foundations for Interactive SYCL in ROOT

Enabling SYCL execution within Cling required some pre-integration and modernization work in the
interpreter. Cling, developed by CERN on top of LLVM/Clang has been in production for quite a while and
carries the tests from over a decade ago. To host complex LLVM passes required by AdaptiveCpp and to
support the requirements of AdaptiveCpp, some technical foundations had to be put in place.

This section describes the preparatory work that made SYCL integration easier, focusing on three main
areas: (i) migration to the new LLVM pass manager, (ii) introduction of the plugin infrastructure, and the
(i) broader LLVM 18 upgrade. It also highlights ongoing efforts to align Cling more closely with the
upstream clang-repl, removing technical debt and simplifying the interpreter architecture.

3.1 Migration to the new LLVM Pass Manager

Cling relied on LLVM’s legacy pass manager. AdaptiveCpp, however implements its SYCL compilation
passes using the new pass manager and is now standard across the ecosystem. Without this migration,
AdaptiveCpp passes could not be scheduled along Cling’s own transformations. A dedicated pull request
(#14267) completed this transition, ensuring that Cling could host modern LLVM passes in its JIT pipeline.
This also reduced the legacy APIs and infrastructure that we might need to maintain as these are no longer
evolving upstream. Importantly, it enabled the co-existence of ROOT’s JIT needs and AdaptiveCpp’s
SYCL passes, which was a prerequisite for task 4.4

Plugin support in Cling

To allow external projects (such as AdaptiveCpp) to extend Cling, it is necessary for Cling to be able to
load clang plugins. With this feature, AdaptiveCpp can be integrated into Cling as a plugin. This also
makes Cling extensible beyond SYCL. Other compiler passes/plugins can now be integrated easily.

LLVM 18 upgrade

Cling and ROOT have lagged behind LLVM’s tip-of-tree due to complexity of integration and the behemoth
testing infrastructure (>2000 tests). For SYCL support, this means bringing Cling to a more recent
baseline. The LLVM 18 rebase (#15696) was a significant undertaking during this period. This required
rebasing and adapting LLVM patches across ROOT and Cling, debugging many failing tests and
addressing issues one-by-one. Around 50 patches were adapted on top of Clang that are required for
ROOT/Cling.

The result is a modernized Cling interpreter, capable of leveraging LLVM'’s current features and APIs,
providing a stable foundation for future upgrades. Several bugs/issues by the LLVM 18 upgrade were
fixed, improving interpreter robustness beyond the scope of SYCL.

Alignment with clang-repl

Another major part of modernization is the ongoing alignment of Cling with clang-repl, LLVM’s upstream
REPL for C++. Cling was upstreamed to LLVM (as clang-repl), but the two diverged. Effort was put into
closing this gap (by reducing the number of patches on top of clang), which is a significant undertaking,
but ensures long-term sustainability.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 9 of 16

https://github.com/root-project/root/pull/14267
https://github.com/root-project/root/pull/15696
https://root.cern/blog/cling-in-llvm/

4

4.1

4.2

4.3

4.4

%) SYCLOPS

Integrating AdaptiveCpp in the Interpreter

With the modernization of Cling in place, the next step was to integrate AdaptiveCpp, the open-source
SYCL implementation developed at Heidelberg University in the context of SYCLOPS into the interpreter.
AdaptiveCpp provides a single-source, single-pass SYCL compiler (SSCP) built on top of Clang/LLVM,
and supports multiple heterogenous backends (OpenMp, CUDA, ROCm, OpenCL).

The main challenge was to adapt a toolchain originally designed as a clang plugin into Cling’s interactive
environment. The section explains how the integration was done and support and interactive SYCL
execution both via REPL and Jupyter notebooks.

Plugin-based integration

AdaptiveCpp can be built as a clang plugin. The first approach was therefore, to extend Cling’s new plugin
infrastructure to dynamically load AdaptiveCpp:

- AdaptiveCpp pass plugin was compiled and loaded alongside Cling

- Cling could then invoke AdaptiveCpp passes during JIT compilation, similar to how Clad automatic
differentiation plugin integrates with ROOT.

- This approach required building AdaptiveCpp against ROOT’s LLVM toolchain to prevent runtime
conflicts between LLVM builds and also required ROOT to be built with dynamic LLVM.

Static integration

Even though runtime plugin-based integration with dynamic LLVM was a straightforward path to SYCL
support in Cling. ROOT has had problems with dynamic LLVM (#12156). LLVM option collisions occurred
when both Cling and AdaptiveCpp attempted to register options at runtime. -
DLLVM_LINK_LLVM_DYLIB=ON settings incompatible with ROOT’s default build. To address the above
issue, adaptiveCpp was integrated statically to ROOT. All the required passes were registered and
executed via Cling’s BackendPasses pipeline. This mirrors how Cling integrates its own JIT passes,
providing a more stable runtime.

AdaptiveCpp challenges

A key difference between compiling full SYCL programs and interpreting SYCL code interactively is kernel
discovery. During traditional compilation, AdaptiveCpp discovers all kernels in the translation unit at
compile time. In Cling, code is submitted incrementally, and kernels may only be visible after multiple
interpreter inputs. This required some modifications to AdaptiveCpp. Static initializers used for kernel
cache registration were unreliable in a JIT context. Patches were introduced so that Cling could notify
AdaptiveCpp whenever a new SYCL kernel was encountered, triggering cache updates dynamically. This
ensured kernels defined interactively could be executed even if they are across notebook cells.

Backends and Platforms

Initial demonstrations of SYCL in Cling focused on OpenMP (CPU) and CUDA (NVIDIA GPU) backends.
This was mostly because these backends were readily available for testing. These were validated in both
REPL and Jupyter notebooks.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 10 of 16

https://github.com/root-project/root/issues/12156#issuecomment-1660324761LLV

%) SYCLOPS

dvalapar@pceproot007:$ bin/root -1
root [0] .L test.cpp
root [1] test();
Running on NVIDIA GeForce RTX 3060 Ti
'+ptx86' is not a recognized feature for this target (ignoring feature)
'+ptx86' is not a recognized feature for this target (ignoring feature)
'+ptx86' is not a recognized feature for this target (ignoring feature)
1: Optimization Level::00

AdaptiveCpp Warning] kernel cache: This application run has resulted in new bin
aries being JIT-compiled. This indicates that the runtime optimization process h
as not yet reached peak performance. You may want to run the application again u

bntil this warning no longer appears to achieve optimal performance.
A{l 2,3, 4}
1}

=C {5 5 5,53}
root [2] test();
Running on NVIDIA GeForce RTX 3060 Ti
Al L 2, 3,4}
163

=45 5. 5.5}
root [3] ||

Figure 4. SYCL code running in a REPL environment

: Jupyter Untitled Last Checkpoint: 15 minutes ago

File Edit View Run Kernel Settings Help Trusted

B+ XTOTM » B C »w Code o JupyterLab [7 ROOTC++ O =

#include <sycl/sycl.hpp>
#include <iostream>

void test()
sycl::queue q;
std: :cout << "Running on "
<< q.get_device().get_info<sycl::info::device: :name>()
<< "\n";

int *a = sycl::malloc_shared<int=(1, q);
int *b = sycl::malloc_shared<int=(1, q);
int *c = sycl::malloc_shared<int=(1, q);

*a = 2; *b = 3;

0 { *c
] { *c

*a + *b; }).wait();
*a + *b; }).wait();

q.single_task(
q.single_task(

std::cout << *a << " + " << ¥bh << " = " << ¥C << "\N";
sycl::free(a, q);

sycl::free(b, g);
sycl::free(c, q);

[4]: test(); m A

0+
+[
]

I Running on AdaptiveCpp OpenMP host device
2+3 =5

Figure 5. SYCL code running in a Jupyter notebook

4.5 Evaluation and testing of SYCL-enabled ROOT/Cling

Integration of AdaptiveCpp into Cling has been validated both functionally (kernels execute interactively
in the interpreter) and quantitatively (measurable speedups over CPU-only execution)

Three types of validation were performed:

1. Functional correctness: Execution of SYCL kernels and verification across backends (OpenMP,
CUDA) and results matched expected outputs.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 11 of 16

N (elements) CPU Time Avg (s) SYCL Time Avg (s)

212
214
216
218
220
222
224
226

%) SYCLOPS

2. Preliminary performance evaluations: Used GenVectorX library developed in SYCLOPS
project, and more specifically ChangeCoord workload within GenVectorX, as a representative
benchmark, to measure speedup over CPU-only execution. After initial JIT compilation for large
sizes, interactive performance is consistently better than CPU as shown below.

0.000151
0.000563
0.007161
0.014682
0.036901
0.156627
0.585460
2.338510

0.0005639
0.000648
0.001983
0.004178
0.010681
0.045938
0.157825
0.564709

Speedup
0.28%
0.87x
3.61x
3.51x%
3.45%
3.41x
3.71x
4.14x%

Figure 6. SYCL-enabled Cling: SYCL vs CPU Performance Benchmark
Using the SYCL interpreter in CLING/ROOT for ChangeCoord example (part of GenVectorX tests)

3. Portability: Same SYCL kernels can run on OpenMP and CUDA backends.

All the benchmarks/validations were run on Linux platforms, using ROOT/Cling built with LLVM 18 and
AdaptiveCpp integrated statically.

- Ju pyter ChangeCoordSYCL Last Checkpoint: 2 minutes ago

File Edit Wiew Run Kernel Settings Help

B+ XDOO » 8 C » Code

.L ChangeCoordSYCL.cxx

void run()

// Use ~1 million elements

s, ur
const std::size t N = 1ULL << 20; // 1

size t local size = 128;

~

rounded to n

static sycl::queue queue{sycl::default selector v};

std::cout << "sycl::queue check - selected device:\n"

<< queue.get_device().get_info=sycl::info::device::name=()
<< std::endl;

Lvectorl *lvi = GenVectors(N);
Lvector0 *lve = ChangeCoord(lvi, queue, N, local_size);

delete vi;
delete lvo;

run();

sycl::queue check - selected device:

NVIDIA GeForce RTX 3060 Ti

sycl time 8.010156 (s)

Trusted

JupyterLab [ROOTC++ O E

‘ I [1:

(ol

0+
+0
-

Figure 7. SYCL-enabled Cling: Performance Benchmark running on a Jupyter Notebook

4.6 Repository and PR Summary

Most of the work/PRs that were opened in ROOT (mostly Cling) can be found here. A substantial amount
of work was done to modernize and fix issues/bugs. This section lists relevant PRs that were opened and

merged in ROOT:

4. Main PR adding SYCL support in ROOT. The feature

is exposed initially with an
experimental_adaptivecpp flag to enable SYCL support (PR #17209)

5. Update of ROOT and Cling to LLVM 18, with numerous follow-up fixes to reduces failing tests from

>200-t0-0 (DF\) #1 RRQR)

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter

Page 12 of 16

https://github.com/root-project/root/issues?q=author%3Adevajithvs
https://github.com/root-project/root/pull/17209
https://github.com/root-project/root/pull/15696

%) SYCLOPS

6. Legacy to new LLVM pass manager, enabling Cling to run compiler passes from AdaptiveCpp (PR
#14267)

7. Plugin support in Cling, enabling adaptiveCpp passes to be loaded dynamically as a plugin (PR
#15169)

8. Refactoring to move Cling close to upstream without breaking existing functionality (PR #15374)
9. Fixed test failures on macOS cause by the update to the new pass manager (PR #14622)

10. And many more: addressing JIT lifetime, symbol resolution, module map issues etc. that might
not be directly related but still relevant.

Some contributions were also made upstream to AdaptiveCpp to ensure compatibility with Cling and
ROOT:

1. Enabling AdaptiveCpp to build and run in Cling without assertions (PR #1816)
2. Further patches upstreamed as part of integration effort (PR #1817, PR #1678)

A few upstream contributions to LLVM (PR #110092, PR #150215) were also made.

4.7 Ongoing work

Ongoing work includes LLVM 20 rebase (PR _#17865), reviewing clang patches and trying to get
ROOT/Cling with AdaptiveCpp run on RISC-V machine as part of integration efforts.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 13 of 16

https://github.com/root-project/root/pull/14267
https://github.com/root-project/root/pull/14267
https://github.com/root-project/root/pull/15169
https://github.com/root-project/root/pull/15169
https://github.com/root-project/root/pull/15374
https://github.com/root-project/root/pull/14622
https://github.com/AdaptiveCpp/AdaptiveCpp/pull/1816
https://github.com/AdaptiveCpp/AdaptiveCpp/pull/1817
https://github.com/AdaptiveCpp/AdaptiveCpp/pull/1678
https://github.com/llvm/llvm-project/pull/110092
https://github.com/llvm/llvm-project/pull/150215
https://github.com/root-project/root/pull/17865

%) SYCLOPS

This deliverable concludes the work done in “Task 4.4: SYCL Interpreter” of WP4 in the SYCLOPS project.
We presented the work carried out to extend ROOT’s C++ interpreter, Cling, to run SYCL kernels natively.
The project achieved its primary goal enabling SYCL kernels to be compiled and executed interactively in
ROOT’s interpreter and within Jupyter notebooks.

5 Conclusion

ROOT users can now experiment with SYCL kernels directly in their familiar analysis environments,
combining portability of SYCL and the interactivity of Cling.

All contributions have been made publicly available through PRs in ROOT/Cling and AdaptiveCpp
repositories. ROOT/Cling with adaptiveCpp support is available in root master when compiled with the flag
“-Dexperimental_adaptivecpp”.

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 14 of 16

https://github.com/root-project/root

&) SYCLOPS

References

(1) https://root.cern/Cling/

(2) https://clang.llvm.org/docs/ClangRepl.html
(3) https://dl.acm.org/doi/abs/10.1145/3585341.3585351

Copyright © 2023 SYCLOPS | DELIVERABLE 4.4 - SYCL interpreter Page 15 of 16

https://root.cern/cling/
https://clang.llvm.org/docs/ClangRepl.html
https://dl.acm.org/doi/abs/10.1145/3585341.3585351

