

Deliverable 5.1 – CUDA to

SYCL porting tool

GRANT AGREEMENT NUMBER: 101092877

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 2 of 17

Project acronym: SYCLOPS

Project full title: Scaling extreme analYtics with Cross architecture
acceLeration based on OPen Standards

Call identifier: HORIZON-CL4-2022-DATA-01-05

Type of action: RIA

Start date: 01/01/2023

End date: 31/12/2025

Grant agreement no: 101092877

D5.1 – CUDA to SYCL porting tool

Executive Summary: This deliverable focuses on “Task 5.1: CUDA to SYCL porting tool”
in WP5. This task aimed at developing and demonstrating a robust
toolchain to facilitate the migration of existing CUDA applications to
the open standard SYCL. The work done in SYCLOPS has
achieved this goal by building two core components: SYCLomatic,
an open-source command-line tool, and SYCLcompat, a
compatibility library that bridges the gap for complex or proprietary
CUDA features by providing SYCL-implemented functions that
mimic CUDA behaviour. This synergistic approach significantly
streamlines the migration workflow, as SYCLomatic typically
translates around 85% of CUDA code successfully and highlights
remaining complex sections for manual refinement.

WP: 5

Author(s): Joe Todd, Kumudha Narasimhan

Editor: Raja Appuswamy

Leading Partner: EUR

Participating Partners: CPLAY

Version: 1.0 Status: Draft

Deliverable Type: Other Dissemination Level: PU

Official Submission
Date:

06-Oct-2025 Actual Submission
Date:

30-Sep-2025

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 3 of 17

Disclaimer
This document contains material, which is the copyright of certain SYCLOPS contractors, and may not
be reproduced or copied without permission. All SYCLOPS consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information
contained in this document may require a license from the proprietor of that information. The
reproduction of this document or of parts of it requires an agreement with the proprietor of that
information.

The SYCLOPS consortium consists of the following partners:

No. Partner Organisation Name Partner Organisation Short
Name

Country

1 EURECOM EUR FR

2 INESC ID - INSTITUTO DE
ENGENHARIADE
SISTEMAS E COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA

INESC PT

3 RUPRECHT-KARLS-
UNIVERSITAET HEIDELBERG

UHEI DE

4 ORGANISATION EUROPEENNE
POUR LA RECHERCHE
NUCLEAIRE

CERN CH

5 HIRO MICRODATACENTERS B.V. HIRO NL

6 ACCELOM ACC FR

7 CODASIP S R O CSIP CZ

8 CODEPLAY SOFTWARE LIMITED CPLAY UK

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 4 of 17

Document Revision History

Version Description Contributions

0.1 Structure and outline EUR

0.2 Updated description of SYCLomatic CPLAY

0.3 Updated description of SYCLDB EUR

1.0 Final draft EUR

Authors

Author Partner

Joe Todd CPLAY

Kumudha Narasimhan CPLAY

Raja Appuswamy EUR

Reviewers

Name Organisation
Aleksandar Ilic INESC

Vincent Heuveline UHEI

Stefan Roiser CERN

Nimisha Chaturvedi ACC

Martin Bozek CSIP

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made through

appropriate citation, quotation or both.

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 5 of 17

Table of Contents

1. Introduction ... 7

2. SYCLomatic .. 8

2.1 Key Features and Functionality .. 8

2.2 Strategic Importance .. 8

3. SYCL Compat ... 9

3.1 How SYCLcompat Works ... 9

3.2 The Synergy Between SYCLomatic and SYCLcompat ... 9

3.3 Code comparison with CUDA ... 9

4. Integration & SYCLOPS Use Case: SYCLDB ... 12

4.1 Crystal GPU Join .. 12

4.1 Porting CUDA to SYCL .. 12

4.2 Evaluation .. 13

5. Use Case Beyond SYCLOPS: LLAMA.CPP .. 15

Conclusion ... 16

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 6 of 17

Executive Summary

This deliverable focuses on “Task 5.1: CUDA to SYCL porting tool” in WP5. This task aimed at developing

and demonstrating a robust toolchain to facilitate the migration of existing CUDA applications to the open

standard SYCL. The work done in SYCLOPS has achieved this goal by building two core components:

SYCLomatic, an open-source command-line tool, and SYCLcompat, a compatibility library that bridges

the gap for complex or proprietary CUDA features by providing SYCL-implemented functions that mimic

CUDA behaviour. This synergistic approach significantly streamlines the migration workflow, as

SYCLomatic typically translates around 85% of CUDA code successfully and highlights remaining

complex sections for manual refinement. .

The conversion tools were also used to convert CUDA to SYCL code and assist the development of

software components in SYCLOPS and beyond. In SYCLOPS, the primary internal demonstration of this

toolchain involved the SYCLOPS Use Case: SYCLDB, the project’s in-house data analytics library. The

tools were applied to port the state-of-the-art Crystal GPU Join hash join operator from CUDA to SYCL.

The evaluation on SYCLOPS EMDC confirmed that the resulting SYCL DB join kernel, after minor

performance optimizations, was capable of matching the performance of hand-crafted CUDA counterparts

and demonstrated portability across a wide variety of hardware, including x86-64 CPUs, NVIDIA GeForce

L40S GPUs, RISC-V CPUs, and the SYCLARA RISC-V accelerator developed in SYCLOPS

A significant demonstration beyond the SYCLOPS project scope utilized SYCLomatic and SYCLcompat

to generate the SYCL backend for Llama.CPP, a high-performance C/C++ inference engine for large

language models (LLMs). This external use case provided an essential testing ground to benchmark the

correctness and performance of the auto-generated SYCL code against the existing CUDA backend. This

successful conversion showcased the utility of the toolchain in the rapidly evolving AI application vertical.

Ultimately, the project successfully demonstrated that combining the automatic conversion capabilities of

SYCLomatic with the broad compatibility offered by SYCLcompat allows developers to quickly generate

functional and performant SYCL applications from existing CUDA code, accelerating the adoption of

heterogeneous computing. The toolchain is available as open source software and has already seen wide-

spread adoption.

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 7 of 17

1. Introduction

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer,

(ii) platform layer, and (iii) application libraries and tools layer.

Figure 1. SYCLOPS architecture

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and

provides heterogeneous hardware with a wide range of accelerators from several vendors.

Platform layer: The platform layer, provides the software required to compile, execute, and interpret

SYCL applications over processors in the infrastructure layer.

Application libraries and tools layer: The libraries layer enables API-based programming by providing

pre-designed, tuned libraries for various deep learning methods for the PointNet autonomous systems use

case (SYCL-DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel

algorithms for scalable genomic analysis (SYCL-GAL). This layer also contains conversion tools, to

facilitate porting of CUDA applications into SYCL, and profiling tools to enable the analysis of cross-

architecture SYCL applications.

This deliverable presents the work carried out to enable CUDA-to-SYCL porting tool as highlighted in

Figure 1 in the context of Task 5.1 of the SYCLOPS project. The work in this task “Objective 5.1: Develop

porting tool to convert existing open-source CUDA into standard SYCL”. More specifically, this document

provides a high-level overview of the work done on the SYCLomatic conversion tool and the SYCLcompat

compatibility library in the context of SYCLOPS. We also concretely demonstrate the use of these tools in

SYCLOPS project, by showing how it was used to convert CUDA-based relational query processing

kernels to SYCL in the context of SYCLDB—the in-house data analytics library developed in SYCLOPS.

We also explain how these tools can be used beyond SYCLOPS by showing we generated Llama.CPP’s

SYCL backend.

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 8 of 17

2. SYCLomatic

SYCLomatic1 is an open-source command-line tool designed to help developers migrate CUDA source

code to SYCL. It streamlines the porting process by automatically converting key CUDA constructs, such

as kernels, data types, and API calls, into their SYCL equivalents. This tool is especially useful for

accelerating the modernization of codebases to support heterogeneous computing across different

hardware architectures, including GPUs, CPUs, and FPGAs, without being tied to a single vendor's

proprietary technology.

SYCLomatic is explained in this YouTube video: https://www.youtube.com/watch?v=isZyevA6jZM.

2.1 Key Features and Functionality

SYCLomatic's primary function is to automate the translation of CUDA code, reducing the manual effort

and time required for porting. It handles a wide range of CUDA features, including:

• Kernel Code: It translates CUDA kernels, which are the core parallel computations, into SYCL

kernels.

• Data Types: The tool converts specific CUDA data types and memory management functions (like

cudaMalloc and cudaMemcpy) to their SYCL counterparts.

• API Calls: SYCLomatic identifies and replaces CUDA API calls with corresponding SYCL APIs,

ensuring functional equivalence.

The tool provides a comprehensive report after the conversion, highlighting any code that couldn't be

automatically translated. This allows developers to focus their efforts on the remaining complex sections,

thereby increasing overall productivity. By providing a solid foundation for the migration, SYCLomatic

significantly lowers the barrier to entry for adopting the SYCL standard.

2.2 Strategic Importance

For organizations, SYCLomatic represents a strategic asset for achieving hardware independence and

future-proofing their high-performance computing applications. By migrating to SYCL, companies can:

• Reduce Vendor Lock-in: Eliminate reliance on proprietary technologies, allowing for greater

flexibility in hardware procurement.

• Increase Code Portability: Enable applications to run on a broader range of hardware platforms

from different vendors, maximizing performance and efficiency.

• Enhance Developer Productivity: Automate a significant portion of the porting process, allowing

development teams to focus on innovation rather than tedious manual conversions.

This tool is a critical component of a strategy aimed at leveraging the full potential of diverse computing

architectures and ensuring that software investments remain viable in a rapidly evolving hardware

landscape.

1 https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-
migration-tool.html

https://www.youtube.com/watch?v=isZyevA6jZM
https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html
https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 9 of 17

3. SYCL Compat

SYCLcompat2 is a library that acts as a complementary piece to the SYCLomatic migration tool. While

SYCLomatic automatically translates CUDA code to SYCL, some CUDA features, especially complex or

vendor-specific APIs, don't have a direct one-to-one equivalent in the SYCL standard. SYCLcompat steps

in to provide a compatibility layer that helps bridge these gaps.

3.1 How SYCLcompat Works

SYCLcompat provides a set of headers and functions that mimic the behaviour of common CUDA APIs.

When SYCLomatic performs a migration, it may replace a CUDA function call with a corresponding

SYCLcompat function. This allows the migrated code to compile and run without needing a complete

manual rewrite for every single CUDA feature. The SYCLcompat functions are themselves implemented

using standard SYCL, which ensures that the resulting application remains portable across different

hardware platforms.

3.2 The Synergy Between SYCLomatic and SYCLcompat

SYCLomatic and SYCLcompat work together to create a streamlined migration workflow. The process

typically looks like this:

1. SYCLomatic Migration: The developer uses the SYCLomatic tool to automatically convert their

CUDA source code to SYCL.

2. SYCLcompat Integration: During this process, SYCLomatic inserts calls to the SYCLcompat

library for CUDA APIs that are not part of the core SYCL specification.

3. Manual Refinement: The developer then addresses any remaining issues flagged by

SYCLomatic, focusing on complex logic and performance tuning rather than basic API

translation.

4. Final Compilation: The migrated code, which now includes SYCL and SYCLcompat calls, is

compiled with a SYCL compiler.

Essentially, SYCLomatic is the migration engine, while SYCLcompat is the compatibility layer that

makes the migrated code functional and portable. This two-part approach significantly simplifies the

porting process, reducing the amount of manual work and accelerating the adoption of heterogeneous

computing.

3.3 Code comparison with CUDA

Putting it all together, the following code snippet shows an implementation of the “Slope intercept kernel”

in CUDA as an example.

2 https://intel.github.io/llvm/syclcompat/README.html

https://intel.github.io/llvm/syclcompat/README.html

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 10 of 17

Device memory allocation and copying functions that provide data input to the kernel in CUDA are shown

below.

Finally, the kernel launch in CUDA is performed as follows.

The equivalent kernel in SYCLcompat is illustrated below.

Corresponding device memory allocation and copying functions that provide input to the SYCL kernel in

SYCLcompat are shown below.

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 11 of 17

Finally, kernel launch in SYCLcompat is done as follows.

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 12 of 17

4. Integration & SYCLOPS Use Case: SYCLDB

SYCLDB is a library of relational primitives developed in SYCLOPS in the context of Task 5.4 (SYCL-

GAL). Our goal in developing SYCLDB was to take the first steps towards investigating the utility of SYCL

in developing performance-portable database engines. SYCLomatic was used to develop initial versions

of relational kernels in SYCLDB, which were then subsequently optimized. Here, we focus on the hash

join operator as an example. We first provide an overview of a state-of-the-art hash join algorithm

implemented in CUDA by the Crystal library3 targeting GPUs. Then, we detail how we ported it from CUDA

to SYCL using SYCLomatic.

4.1 Crystal GPU Join

The novelty of Crystal lies in its tile-based implementation strategy. The idea behind tiling comes from the

observation that threads in a GPU are grouped into thread blocks (in CUDA terminology) such that threads

within a thread block can communicate through shared memory and synchronize through barriers. The

set of data elements that can be collectively processed by a thread block is referred to as a tile. The basic

compute unit in Crystal is a tile, which is a sub slice of the input data. This approach makes it possible to

write kernels in terms of block-wide functions that take work with a set of tiles as units of input and output.

Each function uses vector instructions for memory accesses, and registers for storing values. %For

instance, the BlockLoad function can be invoked in a kernel to load, for any given tile, all elements of the

tile in a vectorized fashion from global memory into thread-local registers.

Using block-wide functions, Crystal implements a no partitioning join, which uses a non-partitioned global

hash table. The join operator comprises two kernels, a build kernel and a probe kernel. The build kernel

populates the hash table with the tuples of the smaller, build relation. Crystal implements a linear probing

strategy due to its simplicity, with the hash table being implemented as a simple array of slots with each

slot containing a key and a payload without any pointers. The probe kernel uses the other relation to

search for matches in parallel. Each thread block loads a tile from the probe table, and each thread

computes the local sum for a subset of tile elements that meet the predicate condition. Then, all local

values are aggregated in a hierarchical fashion, first for all threads within a block, and then across all

thread blocks.

4.1 Porting CUDA to SYCL

In order to port the Crystal join from CUDA to SYCL, we start with SYCLomatic that aims to convert CUDA

code to SYCL at syntax level, recognizing the main CUDA constructs and converting them to their SYCL

equivalent. We use this tool to convert the Crystal hash join implementation together with necessary block-

wide functions from CUDA to SYCL. Our goal in using the compatibility tool is to understand and document

issues in converting various aspects like data movement, kernel parameterization, atomics and

synchronization from CUDA into SYCL, in order to assist in future migration of current CUDA-based GPU

database engines.

SYCLomatic takes a .cu file as input and produces its SYCL counterpart. Thus, we apply the command to

all .cu file of the project. At the source level, the overall translation is quite accurate. SYCLomatic

automatically adds necessary boilerplate such as headers and compiler directives required for enabling

SYCL compilation. Similarly, SYCLomatic preserves and converts templatized functions that correspond

to block primitives and join kernels of the Crystal library for most part, with some minor syntactic

modifications. At the programming model level, SYCLomatic replaces CUDA kernel launches with an

nd_range -- parallel_for kernel.

Further, CUDA data management calls that move data from host to device memory, or assign specific

values to device allocated memory regions, are replaced with appropriate SYCL calls. Despite its utility,

3 https://github.com/anilshanbhag/crystal

https://github.com/anilshanbhag/crystal

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 13 of 17

one cannot expect SYCLomatic to blindly convert everything automatically and correctly. The first issue

concerns kernel dimensions. CUDA programming model requires kernel dimensions to be specified in

terms of number of threads in a thread block, and the number of thread blocks per grid. Moreover, both

thread blocks and grids can be multidimensional. Similarly, SYCL uses the notion of work-item and work-

group. Thus, a CUDA thread block roughly corresponds to a SYCL work-group, and a CUDA thread gets

mapped to a work-item in SYCL. SYCL also provides an nd_item object to enable index lookup in a

nd_range kernel. It represents the index of each work-item.

The compatibility tool converts the two CUDA join kernels - build and probe - in two SYCL nd_range

parallel_for kernels, and automatically adds the id_item as parameters of all functions called in the kernel

code. However, despite the fact that the original code implements a 1D kernel, SYCLomatic converts it

into 3-dimensional kernel. As consequence, all accesses to the threads indexes (local-id, global-id, group-

id) within the kernel code were wrong and needed to be rewritten.

Second, synchronization primitives and low-level constructs were not ported correctly. For example, in the

original code, threads in the probe-kernel have to compute the sum of the product for all entries that match

the query predicate. This involves a certain number of local sum computations performed by each thread

that are first aggregated at the tile level by all threads within a thread block, and then aggregated across

all thread blocks. This involves the use of memory barriers, atomics, and synchronisation at various kernel

execution stages. More precisely, all threads in a warp compute aggregate their value using a low level

primitive (shuffle_down) that allows inter-thread communication without any cost. The value computed by

each warp is saved in local memory. A tree-reduction pattern is used to compute the aggregate sum per

thread block. Finally, after all thread blocks compute their local sum, the global sum is computed using

atomic instructions in the global memory.

While SYCLomatic is able to convert the memory barrier and the atomic variables from CUDA to SYCL, it

was not able to replace the warp-level functions which are a central piece of the Crystal tile-based probe

kernel. Thus, we had to reimplement the logic. SYCL already provides a set of functions that implement

the main data-parallel patterns at the work-group level. Thus, we map the concept of a tile from Crystal to

a work-group in SYCL and use the reduce() function of the work_group class to perform tile-level reduction

directly without having to implement warp-level shuffles and block-level tree reduction manually.

Finally, in some cases, even when the SYCL conversion is semantically correct, it might be suboptimal in

terms of performance. An example is the call to the memory barrier function. SYCLomatic converts it

automatically into a memory fence in both global memory and local memory which are very expensive.

However, in this specific case, a memory fence in the local memory of each work-group was sufficient.

Thus, we optimized the code generated by SYCLomatic.

4.2 Evaluation

We ran the resulting SYCL join on a wide variety of hardware, many of which was developed and deployed

in SYCLOPS, through our work done in the Infrastructure Layer (WP3). We provide a short summary of

the hardware below.

• A x86-64 server equipped with a 24-core Intel(R) Core(TM) i9-10920X Cascade Lake CPU clocked

at 3.50GHz and 128GB of DDR4 RAM. The system runs Ubuntu 22.04.5 LTS. We compile

SYCLDB with ACPP compiler (v25.02.0) developed in SYCLOPS.

• Two NVIDIA GeForce L40S GPUs accessed via a PCI-Express Gen4 x16 interface, which

provides a theoretical peak bandwidth of 31.5 GB/s in each direction. We use the same ACPP

v25.02.0, built with NVCC v12.4 support, to target the GPUs.

• A System-on-Chip equipped with a 64-core SG2042 RISC-V CPU clocked at 2GHz and 128 GB

of DDR4 RAM.

• The SYCLARA RISC-V accelerator developed in SYCLOPS. We use the DPC++ compiler (v2024-

06-03) to cross compile SYCLDB, and communicate with the device via OCK v4.0.0.

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 14 of 17

Figure 2. Execution time of SYCLDB join kernel under variety of hardware

For the workload, we generate a synthetic database containing two tables F and D. Table F is a large fact

table containing two columns f1 and f2 both of which are 4-byte floating point values. Table D is a small

dimension table containing two columns d1 and d2 which are also 4-byte floating point values. The join

query that performs SELECT SUM (f1 × d1) FROM F, D WHERE f2 = d2. For all experiments, the D table

is fixed at 128MB and the F table is 2GB.

Figure 2 shows the execution time of SYCLDB and Crystal on various CPU and GPU backends. There

are several important observations to be made. First, comparing SYCLDB with Crystal, we see that their

performance is identical. Prior work comparing SYCL versus CUDA for database acceleration had shown

CUDA-based implementation to be 4× faster than a SYCL-based one. Our result shows that this gap has

been closed, thanks to improvements in SYCL compiler toolchains. Second, comparing CPU and GPU,

we can see that the NVIDIA GPU is 11× faster than the x64 CPU, which in turn, is 1.4× faster than the

RISC-V CPU for the join query. This can be explained by the fact that the memory on the NVIDIA GPU

has an order of magnitude higher memory bandwidth compared to the x64 and RISC-V CPUs. Similarly,

SG2042 is one of the earliest RISC-V CPU tape outs available in the market. Given this, it is

understandable that its performance is not competitive with the more mature x64 CPU.

To summarize, our results show that SYCLCompat is a useful tool in assisting developers to port CUDA

to SYCL code. The code generated by SYCLCompat, with minor optimizations, is capable of matching the

performance of hand-crafted CUDA counterparts, while being portable across diverse processor

architectures.

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 15 of 17

5. Use Case Beyond SYCLOPS: LLAMA.CPP

In addition to the use of SYCLCompat in the context of SYCLDB described earlier, we have also performed

experiments to show case its utility in AI application verticals. Llama.cpp is a high-performance C/C++

inference engine for large language models (LLMs). It was originally developed to run Meta's Llama

models on consumer hardware, particularly without requiring a powerful GPU. Its core mission is to provide

an efficient and portable way to run LLMs on various platforms, from laptops and mobile devices to

embedded systems.

SYCLomatic & SYCLcompat were essential components of Llama.cpp’s SYCL backend, which was partly

automatically generated from the existing CUDA backend. Details of the project to port Llama.cpp from

CUDA to SYCL are described in detailed blogs by Ruyman Reyes which was shared on the SYCLOPS

website (https://www.syclops.org/updates/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-

one-llama-at-a-time-part-one,https://www.syclops.org/updates/2024/08/13/part-two-porting-ai-codes-

from-cuda-to-sycl-and-oneapi-one-llama-at-a-time).

https://www.syclops.org/updates/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time-part-one
https://www.syclops.org/updates/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time-part-one
https://www.syclops.org/updates/2024/08/13/part-two-porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time
https://www.syclops.org/updates/2024/08/13/part-two-porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 16 of 17

6. Conclusion

The work conducted demonstrated a successful approach for migrating CUDA applications to the open

standard SYCL, relying on the combined strengths of the SYCLomatic conversion tool and the

SYCLcompat compatibility library. This synergy allows developers to rapidly generate functional and

performant SYCL applications based on existing CUDA code. A key metric of success is that SYCLomatic

typically translates approximately 85% of CUDA code successfully, thereby dramatically reducing the

manual effort required. Furthermore, the tool intelligently highlights its own translation limitations, making

it straightforward for developers to identify and focus on the remaining complex sections that require

refinement. Importantly, the resulting kernel demonstrated high performance and portability across diverse

processor architectures, including NVIDIA GPUs, x64 CPUs, RISC-V CPUs, and the SYCLARA RISC-V

accelerator developed within SYCLOPS and deployed in the SYCLOPS EMDC.

Finally, the tools proved their utility beyond the project’s scope through the successful generation of the

SYCL backend for Llama.CPP, a high-performance inference engine for large language models (LLMs).

This external use case provided an ideal testing ground, leveraging the existing CUDA backend as a

crucial benchmark to verify the correctness and performance of the automatically generated SYCL code.

In conclusion, the project successfully demonstrated that the SYCLomatic and SYCLcompat toolchain

provides a vital means for accelerating the adoption of heterogeneous computing by providing a

streamlined, efficient, and performance-competitive method for migrating high-performance computing

applications away from proprietary CUDA ecosystems.

All work done on SYCLomatic and SYCLcompat has already been made open source in their public Github

repositories.

Copyright  2023 SYCLOPS | Deliverable 5.1 – CUDA to SYCL porting tool Page 17 of 17

References

[1] https://codeplay.com/portal/blogs/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-

llama-at-a-time-part-one

[2] https://intel.github.io/llvm/syclcompat/README.html

[3] https://www.youtube.com/watch?v=isZyevA6jZM

https://codeplay.com/portal/blogs/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time-part-one
https://codeplay.com/portal/blogs/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time-part-one
https://intel.github.io/llvm/syclcompat/README.html
https://www.youtube.com/watch?v=isZyevA6jZM

