SYCLOPS

Deliverable 5.1 — CUDA to
SYCL porting tool

EEEEEEE

%) SYCLOPS

e
)4

Project acronym:

Project full title:

Call identifier:

Type of action:

Start date:

End date:

Grant agreement no:

SYCLOPS

SYCLOPS

Scaling extreme analYtics with Cross architecture
accelLeration based on OPen Standards

HORIZON-CL4-2022-DATA-01-05
RIA

01/01/2023

31/12/2025

101092877

Executive Summary

WP:

Author(s):
Editor:

Leading Partner:

Participating Partners
Version
Deliverable Type

Official Submission 06-Oct-2025

Date

D5.1 — CUDA to SYCL porting tool

This deliverable focuses on “Task 5.1: CUDA to SYCL porting tool”
in WP5. This task aimed at developing and demonstrating a robust
toolchain to facilitate the migration of existing CUDA applications to
the open standard SYCL. The work done in SYCLOPS has
achieved this goal by building two core components: SYCLomatic,
an open-source command-line tool, and SYCLcompat, a
compatibility library that bridges the gap for complex or proprietary
CUDA features by providing SYCL-implemented functions that
mimic CUDA behaviour. This synergistic approach significantly
streamlines the migration workflow, as SYCLomatic typically
translates around 85% of CUDA code successfully and highlights
remaining complex sections for manual refinement.

5

Joe Todd, Kumudha Narasimhan
Raja Appuswamy
EUR

. CPLAY

- 1.0

: Other

Status: Draft
Dissemination Level: PU

Actual Submission 30-Sep-2025
Date:

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool

Page 2 of 17

%) SYCLOPS

Disclaimer

This document contains material, which is the copyright of certain SYCLOPS contractors, and may not
be reproduced or copied without permission. All SYCLOPS consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information

contained in this document may require a license from the proprietor of that information. The

reproduction of this document or of parts of it requires an agreement with the proprietor of that
information.

The SYCLOPS consortium consists of the following partners:

Partner Organisation Name Partner Organisation Short Country
Name
1 EURECOM EUR FR
2 INESC ID - INSTITUTO DE INESC PT
ENGENHARIADE
SISTEMAS E COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA
3 RUPRECHT-KARLS- UHEI DE
UNIVERSITAET HEIDELBERG
4 ORGANISATION EUROPEENNE CERN CH
POUR LA RECHERCHE
NUCLEAIRE
5 HIRO MICRODATACENTERS B.V. HIRO NL
6 ACCELOM ACC FR
7 CODASIPSRO CsIP Cz
8 CODEPLAY SOFTWARE LIMITED CPLAY UK

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool

Page 3 of 17

%) SYCLOPS

Document Revision History

Version Description Contributions

0.1 Structure and outline EUR
0.2 Updated description of SYCLomatic CPLAY
0.3 Updated description of SYCLDB EUR
1.0 Final draft EUR
Authors
Author Partner
Joe Todd CPLAY
Kumudha Narasimhan CPLAY
Raja Appuswamy EUR
Reviewers
NELE] Organisation
Aleksandar llic INESC
Vincent Heuveline UHEI
Stefan Roiser CERN
Nimisha Chaturvedi ACC
Martin Bozek CSIP

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both.

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 4 of 17

%) SYCLOPS

Table of Contents

A [o1 (oo (U Tt 1o o IR PP PPPPPPPPPPPPN 7
A 4 @4 I g T o PSR 8
2.1 Key Features and FUNCLONAIILYcooiiiiiiiiiii e 8
A S (- (=0 [11 4T 0 o] i 7= g (o7 =TS 8
I T (O I @] 1 oo T | PP PPPPTI 9
3.1 HOW SYCLCOMPAL WOTKS ... 9
3.2 The Synergy Between SYCLomatic and SYCLCOMPAL.........ccccevviviiiiieeeeeiiiiiiiiiaeeeenn, 9
3.3 Code comparison WIth CUDA ... e 9
4. Integration & SYCLOPS Use Case: SYCLDBciiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiineieeinees 12
o R O = r= L €1 = U N o o P 12
4.1 POrting CUDA 10 SYCL ..viiiiieiiiiiiiiiitt e ettt e e e e e e st e e e e e e e s s s nsansaaeeaeaaeeaannnnssaees 12
A V- | VT o] o 13
5. Use Case Beyond SYCLOPS: LLAMA.CPPuuuuuiiiiiiiiiiiiiiiiitiiiiieiiniiniiinnennennnnennennnnnees 15
(O] o (11T o 16

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 5 of 17

%) SYCLOPS

This deliverable focuses on “Task 5.1: CUDA to SYCL porting tool” in WP5. This task aimed at developing
and demonstrating a robust toolchain to facilitate the migration of existing CUDA applications to the open
standard SYCL. The work done in SYCLOPS has achieved this goal by building two core components:
SYCLomatic, an open-source command-line tool, and SYCLcompat, a compatibility library that bridges
the gap for complex or proprietary CUDA features by providing SYCL-implemented functions that mimic
CUDA behaviour. This synergistic approach significantly streamlines the migration workflow, as
SYCLomatic typically translates around 85% of CUDA code successfully and highlights remaining
complex sections for manual refinement. .

Executive Summary

The conversion tools were also used to convert CUDA to SYCL code and assist the development of
software components in SYCLOPS and beyond. In SYCLOPS, the primary internal demonstration of this
toolchain involved the SYCLOPS Use Case: SYCLDB, the project’s in-house data analytics library. The
tools were applied to port the state-of-the-art Crystal GPU Join hash join operator from CUDA to SYCL.
The evaluation on SYCLOPS EMDC confirmed that the resulting SYCL DB join kernel, after minor
performance optimizations, was capable of matching the performance of hand-crafted CUDA counterparts
and demonstrated portability across a wide variety of hardware, including x86-64 CPUs, NVIDIA GeForce
L40S GPUs, RISC-V CPUs, and the SYCLARA RISC-V accelerator developed in SYCLOPS

A significant demonstration beyond the SYCLOPS project scope utilized SYCLomatic and SYCLcompat
to generate the SYCL backend for Llama.CPP, a high-performance C/C++ inference engine for large
language models (LLMs). This external use case provided an essential testing ground to benchmark the
correctness and performance of the auto-generated SYCL code against the existing CUDA backend. This
successful conversion showcased the utility of the toolchain in the rapidly evolving Al application vertical.

Ultimately, the project successfully demonstrated that combining the automatic conversion capabilities of
SYCLomatic with the broad compatibility offered by SYCLcompat allows developers to quickly generate
functional and performant SYCL applications from existing CUDA code, accelerating the adoption of
heterogeneous computing. The toolchain is available as open source software and has already seen wide-
spread adoption.

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 6 of 17

&) SYCLOPS

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer,
(i) platform layer, and (iii) application libraries and tools layer.

1.Introduction

5 | Autonomous systems |

i | High-energy physics analysis | Applications

i | Precision oncology |

... SYOLROOT Tools
o SYOLGAL
SYCL Compilers E SYCL Runtimes Platform |

..

RISC-V
RVV accelerator

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and
provides heterogeneous hardware with a wide range of accelerators from several vendors.

Figure 1. SYCLOPS architecture

Platform layer: The platform layer, provides the software required to compile, execute, and interpret
SYCL applications over processors in the infrastructure layer.

Application libraries and tools layer: The libraries layer enables API-based programming by providing
pre-designed, tuned libraries for various deep learning methods for the PointNet autonomous systems use
case (SYCL-DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel
algorithms for scalable genomic analysis (SYCL-GAL). This layer also contains conversion tools, to
facilitate porting of CUDA applications into SYCL, and profiling tools to enable the analysis of cross-
architecture SYCL applications.

This deliverable presents the work carried out to enable CUDA-to-SYCL porting tool as highlighted in
Figure 1 in the context of Task 5.1 of the SYCLOPS project. The work in this task “Objective 5.1: Develop
porting tool to convert existing open-source CUDA into standard SYCL”. More specifically, this document
provides a high-level overview of the work done on the SYCLomatic conversion tool and the SYCLcompat
compatibility library in the context of SYCLOPS. We also concretely demonstrate the use of these tools in
SYCLOPS project, by showing how it was used to convert CUDA-based relational query processing
kernels to SYCL in the context of SYCLDB—the in-house data analytics library developed in SYCLOPS.
We also explain how these tools can be used beyond SYCLOPS by showing we generated Llama.CPP’s
SYCL backend.

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 7 of 17

%) SYCLOPS

SYCLomatic! is an open-source command-line tool designed to help developers migrate CUDA source
code to SYCL. It streamlines the porting process by automatically converting key CUDA constructs, such
as kernels, data types, and API calls, into their SYCL equivalents. This tool is especially useful for
accelerating the modernization of codebases to support heterogeneous computing across different
hardware architectures, including GPUs, CPUs, and FPGAs, without being tied to a single vendor's
proprietary technology.

2.SYCLomatic

SYCLomatic is explained in this YouTube video: hitps://www.youtube.com/watch?v=isZyevAG6|ZM.

2.1 Key Features and Functionality

SYCLomatic's primary function is to automate the translation of CUDA code, reducing the manual effort
and time required for porting. It handles a wide range of CUDA features, including:

e Kernel Code: It translates CUDA kernels, which are the core parallel computations, into SYCL
kernels.

o Data Types: The tool converts specific CUDA data types and memory management functions (like
cudaMalloc and cudaMemcpy) to their SYCL counterparts.

e API Calls: SYCLomatic identifies and replaces CUDA API calls with corresponding SYCL APIs,
ensuring functional equivalence.

The tool provides a comprehensive report after the conversion, highlighting any code that couldn't be
automatically translated. This allows developers to focus their efforts on the remaining complex sections,
thereby increasing overall productivity. By providing a solid foundation for the migration, SYCLomatic
significantly lowers the barrier to entry for adopting the SYCL standard.

2.2 Strategic Importance

For organizations, SYCLomatic represents a strategic asset for achieving hardware independence and
future-proofing their high-performance computing applications. By migrating to SYCL, companies can:

e Reduce Vendor Lock-in: Eliminate reliance on proprietary technologies, allowing for greater
flexibility in hardware procurement.

¢ Increase Code Portability: Enable applications to run on a broader range of hardware platforms
from different vendors, maximizing performance and efficiency.

o Enhance Developer Productivity: Automate a significant portion of the porting process, allowing
development teams to focus on innovation rather than tedious manual conversions.

This tool is a critical component of a strategy aimed at leveraging the full potential of diverse computing
architectures and ensuring that software investments remain viable in a rapidly evolving hardware
landscape.

1 https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-
migration-tool.html

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 8 of 17

https://www.youtube.com/watch?v=isZyevA6jZM
https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html
https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html

%) SYCLOPS

SYCLcompat? is a library that acts as a complementary piece to the SYCLomatic migration tool. While
SYCLomatic automatically translates CUDA code to SYCL, some CUDA features, especially complex or
vendor-specific APIs, don't have a direct one-to-one equivalent in the SYCL standard. SYCLcompat steps
in to provide a compatibility layer that helps bridge these gaps.

3.1 How SYCLcompat Works

3.SYCL Compat

SYCLcompat provides a set of headers and functions that mimic the behaviour of common CUDA APIs.
When SYCLomatic performs a migration, it may replace a CUDA function call with a corresponding
SYCLcompat function. This allows the migrated code to compile and run without needing a complete
manual rewrite for every single CUDA feature. The SYCLcompat functions are themselves implemented
using standard SYCL, which ensures that the resulting application remains portable across different
hardware platforms.

3.2 The Synergy Between SYCLomatic and SYCLcompat

SYCLomatic and SYCLcompat work together to create a streamlined migration workflow. The process
typically looks like this:

1. SYCLomatic Migration: The developer uses the SYCLomatic tool to automatically convert their
CUDA source code to SYCL.

2. SYCLcompat Integration: During this process, SYCLomatic inserts calls to the SYCLcompat
library for CUDA APIs that are not part of the core SYCL specification.

3. Manual Refinement: The developer then addresses any remaining issues flagged by
SYCLomatic, focusing on complex logic and performance tuning rather than basic API
translation.

4. Final Compilation: The migrated code, which now includes SYCL and SYCLcompat calls, is
compiled with a SYCL compiler.

Essentially, SYCLomatic is the migration engine, while SYCLcompat is the compatibility layer that
makes the migrated code functional and portable. This two-part approach significantly simplifies the
porting process, reducing the amount of manual work and accelerating the adoption of heterogeneous
computing.

3.3 Code comparison with CUDA

Putting it all together, the following code snippet shows an implementation of the “Slope intercept kernel”
in CUDA as an example.

2 https://intel.qgithub.io/llvm/syclcompat/README.html|

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 9 of 17

https://intel.github.io/llvm/syclcompat/README.html

%) SYCLOPS

__global void slope_intercept(float =Y, float *X, float m, float b, size t n) {
size t bx = blockIdx.X;
size t tx = threadIdx.X;

bx * blockDim.x + tx;

Device memory allocation and copying functions that provide data input to the kernel in CUDA are shown
below.

int BLOCK SIZE
void slope_intercept(float *Y, float *X, float m, float b, size t n

size t bx = syclcompat::work group id::x
size t tx = syclcompat::local id::x

size t i = bx * BLOCK SIZE + tx

Finally, the kernel launch in CUDA is performed as follows.

std::cout "Computing result using CUDA Kernel... ";
slope_intercept<<<blocksPerGrid, threadsPerBlock>>>(d_Y, d_X, m, b, n_points);
cudaDeviceSynchronize();

std::cout "DONE" "\n";

The equivalent kernel in SYCLcompat is illustrated below.

float *d_X = nullptr;

float *d_Y = nullptr;
cudaMalloc((void **)5d X, mem_size);
cudaMalloc((void **)&5d_Y, mem_size);
CHECK MEMORY(d_X);

CHECK MEMORY(d_Y);

cudaMemcpy(d_X, h_X, mem_size, cudaMemcpyHostToDevice);

Corresponding device memory allocation and copying functions that provide input to the SYCL kernel in
SYCLcompat are shown below.

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 10 of 17

%) SYCLOPS

float *=d_X float *)syclcompat::malloc(mem_size
float *d_Y float *)syclcompat::malloc(mem_size
CHECK MEMORY(d_X

CHECK MEMORY(d_Y

syclcompat: :memcpy(d_X, h_X, mem_size

Finally, kernel launch in SYCLcompat is done as follows.

std: :cout "Computing result using SYCL Kernel...
syclcompat: :launch<slope intercept<32 grid, threads, d_Y, d X, m, b
n_points

syclcompat: :wait
std: :cout "DONE"

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 11 of 17

%) SYCLOPS

4. Integration & SYCLOPS Use Case: SYCLDB

SYCLDB is a library of relational primitives developed in SYCLOPS in the context of Task 5.4 (SYCL-
GAL). Our goal in developing SYCLDB was to take the first steps towards investigating the utility of SYCL
in developing performance-portable database engines. SYCLomatic was used to develop initial versions
of relational kernels in SYCLDB, which were then subsequently optimized. Here, we focus on the hash
join operator as an example. We first provide an overview of a state-of-the-art hash join algorithm
implemented in CUDA by the Crystal library® targeting GPUs. Then, we detail how we ported it from CUDA
to SYCL using SYCLomatic.

4.1 Crystal GPU Join

The novelty of Crystal lies in its tile-based implementation strategy. The idea behind tiling comes from the
observation that threads in a GPU are grouped into thread blocks (in CUDA terminology) such that threads
within a thread block can communicate through shared memory and synchronize through barriers. The
set of data elements that can be collectively processed by a thread block is referred to as a tile. The basic
compute unit in Crystal is a tile, which is a sub slice of the input data. This approach makes it possible to
write kernels in terms of block-wide functions that take work with a set of tiles as units of input and output.
Each function uses vector instructions for memory accesses, and registers for storing values. %For
instance, the BlockLoad function can be invoked in a kernel to load, for any given tile, all elements of the
tile in a vectorized fashion from global memory into thread-local registers.

Using block-wide functions, Crystal implements a no partitioning join, which uses a non-patrtitioned global
hash table. The join operator comprises two kernels, a build kernel and a probe kernel. The build kernel
populates the hash table with the tuples of the smaller, build relation. Crystal implements a linear probing
strategy due to its simplicity, with the hash table being implemented as a simple array of slots with each
slot containing a key and a payload without any pointers. The probe kernel uses the other relation to
search for matches in parallel. Each thread block loads a tile from the probe table, and each thread
computes the local sum for a subset of tile elements that meet the predicate condition. Then, all local
values are aggregated in a hierarchical fashion, first for all threads within a block, and then across all
thread blocks.

4.1 Porting CUDA to SYCL

In order to port the Crystal join from CUDA to SYCL, we start with SYCLomatic that aims to convert CUDA
code to SYCL at syntax level, recognizing the main CUDA constructs and converting them to their SYCL
equivalent. We use this tool to convert the Crystal hash join implementation together with necessary block-
wide functions from CUDA to SYCL. Our goal in using the compatibility tool is to understand and document
issues in converting various aspects like data movement, kernel parameterization, atomics and
synchronization from CUDA into SYCL, in order to assist in future migration of current CUDA-based GPU
database engines.

SYCLomatic takes a .cu file as input and produces its SYCL counterpart. Thus, we apply the command to
all .cu file of the project. At the source level, the overall translation is quite accurate. SYCLomatic
automatically adds necessary boilerplate such as headers and compiler directives required for enabling
SYCL compilation. Similarly, SYCLomatic preserves and converts templatized functions that correspond
to block primitives and join kernels of the Crystal library for most part, with some minor syntactic
modifications. At the programming model level, SYCLomatic replaces CUDA kernel launches with an
nd_range -- parallel_for kernel.

Further, CUDA data management calls that move data from host to device memory, or assign specific
values to device allocated memory regions, are replaced with appropriate SYCL calls. Despite its utility,

3

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 12 of 17

https://github.com/anilshanbhag/crystal

%) SYCLOPS

one cannot expect SYCLomatic to blindly convert everything automatically and correctly. The first issue
concerns kernel dimensions. CUDA programming model requires kernel dimensions to be specified in
terms of number of threads in a thread block, and the number of thread blocks per grid. Moreover, both
thread blocks and grids can be multidimensional. Similarly, SYCL uses the notion of work-item and work-
group. Thus, a CUDA thread block roughly corresponds to a SYCL work-group, and a CUDA thread gets
mapped to a work-item in SYCL. SYCL also provides an nd_item object to enable index lookup in a
nd_range kernel. It represents the index of each work-item.

The compatibility tool converts the two CUDA join kernels - build and probe - in two SYCL nd_range
parallel_for kernels, and automatically adds the id_item as parameters of all functions called in the kernel
code. However, despite the fact that the original code implements a 1D kernel, SYCLomatic converts it
into 3-dimensional kernel. As consequence, all accesses to the threads indexes (local-id, global-id, group-
id) within the kernel code were wrong and needed to be rewritten.

Second, synchronization primitives and low-level constructs were not ported correctly. For example, in the
original code, threads in the probe-kernel have to compute the sum of the product for all entries that match
the query predicate. This involves a certain number of local sum computations performed by each thread
that are first aggregated at the tile level by all threads within a thread block, and then aggregated across
all thread blocks. This involves the use of memory barriers, atomics, and synchronisation at various kernel
execution stages. More precisely, all threads in a warp compute aggregate their value using a low level
primitive (shuffle_down) that allows inter-thread communication without any cost. The value computed by
each warp is saved in local memory. A tree-reduction pattern is used to compute the aggregate sum per
thread block. Finally, after all thread blocks compute their local sum, the global sum is computed using
atomic instructions in the global memory.

While SYCLomatic is able to convert the memory barrier and the atomic variables from CUDA to SYCL, it
was not able to replace the warp-level functions which are a central piece of the Crystal tile-based probe
kernel. Thus, we had to reimplement the logic. SYCL already provides a set of functions that implement
the main data-parallel patterns at the work-group level. Thus, we map the concept of a tile from Crystal to
a work-group in SYCL and use the reduce() function of the work_group class to perform tile-level reduction
directly without having to implement warp-level shuffles and block-level tree reduction manually.

Finally, in some cases, even when the SYCL conversion is semantically correct, it might be suboptimal in
terms of performance. An example is the call to the memory barrier function. SYCLomatic converts it
automatically into a memory fence in both global memory and local memory which are very expensive.
However, in this specific case, a memory fence in the local memory of each work-group was sufficient.
Thus, we optimized the code generated by SYCLomatic.

4.2 Evaluation

We ran the resulting SYCL join on a wide variety of hardware, many of which was developed and deployed
in SYCLOPS, through our work done in the Infrastructure Layer (WP3). We provide a short summary of
the hardware below.

o A x86-64 server equipped with a 24-core Intel(R) Core(TM) i9-10920X Cascade Lake CPU clocked
at 3.50GHz and 128GB of DDR4 RAM. The system runs Ubuntu 22.04.5 LTS. We compile
SYCLDB with ACPP compiler (v25.02.0) developed in SYCLOPS.

o Two NVIDIA GeForce L40S GPUs accessed via a PCIl-Express Gen4 x16 interface, which
provides a theoretical peak bandwidth of 31.5 GB/s in each direction. We use the same ACPP
v25.02.0, built with NVCC v12.4 support, to target the GPUs.

e A System-on-Chip equipped with a 64-core SG2042 RISC-V CPU clocked at 2GHz and 128 GB
of DDR4 RAM.

e The SYCLARA RISC-V accelerator developed in SYCLOPS. We use the DPC++ compiler (v2024-
06-03) to cross compile SYCLDB, and communicate with the device via OCK v4.0.0.

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 13 of 17

%) SYCLOPS

800
600 :
400 ;
300
200 s
160 / - -+
7 120 T : —&— RISC-V SYCLDB
= g0 i Cascade Lake SYCLDB _
g 604 —¢ - NVIDIA SYCLDB
SES I 1 I --#- NVIDIA Crystal I
|1 3 R -
20 -+ SR Sectiti
IR o
12 ’*r """
8 14
P O Dy \s)
AR A & &

F' table size (MB)

Figure 2. Execution time of SYCLDB join kernel under variety of hardware

For the workload, we generate a synthetic database containing two tables F and D. Table F is a large fact
table containing two columns f1 and f2 both of which are 4-byte floating point values. Table D is a small
dimension table containing two columns d1 and d2 which are also 4-byte floating point values. The join
guery that performs SELECT SUM (f1 x d1) FROM F, D WHERE f2 = d2. For all experiments, the D table
is fixed at 128MB and the F table is 2GB.

Figure 2 shows the execution time of SYCLDB and Crystal on various CPU and GPU backends. There
are several important observations to be made. First, comparing SYCLDB with Crystal, we see that their
performance is identical. Prior work comparing SYCL versus CUDA for database acceleration had shown
CUDA-based implementation to be 4x faster than a SYCL-based one. Our result shows that this gap has
been closed, thanks to improvements in SYCL compiler toolchains. Second, comparing CPU and GPU,
we can see that the NVIDIA GPU is 11x faster than the x64 CPU, which in turn, is 1.4x faster than the
RISC-V CPU for the join query. This can be explained by the fact that the memory on the NVIDIA GPU
has an order of magnitude higher memory bandwidth compared to the x64 and RISC-V CPUs. Similarly,
SG2042 is one of the earliest RISC-V CPU tape outs available in the market. Given this, it is
understandable that its performance is not competitive with the more mature x64 CPU.

To summarize, our results show that SYCLCompat is a useful tool in assisting developers to port CUDA
to SYCL code. The code generated by SYCLCompat, with minor optimizations, is capable of matching the
performance of hand-crafted CUDA counterparts, while being portable across diverse processor
architectures.

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 14 of 17

%) SYCLOPS

5.Use Case Beyond SYCLOPS: LLAMA.CPP

In addition to the use of SYCLCompat in the context of SYCLDB described earlier, we have also performed
experiments to show case its utility in Al application verticals. Llama.cpp is a high-performance C/C++
inference engine for large language models (LLMs). It was originally developed to run Meta's Llama
models on consumer hardware, particularly without requiring a powerful GPU. Its core mission is to provide
an efficient and portable way to run LLMs on various platforms, from laptops and mobile devices to
embedded systems.

SYCLomatic & SYCLcompat were essential components of Llama.cpp’s SYCL backend, which was partly
automatically generated from the existing CUDA backend. Details of the project to port Llama.cpp from
CUDA to SYCL are described in detailed blogs by Ruyman Reyes which was shared on the SYCLOPS
website (https://www.syclops.org/updates/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-
one-llama-at-a-time-part-one, https://www.syclops.org/updates/2024/08/13/part-two-porting-ai-codes-
from-cuda-to-sycl-and-oneapi-one-llama-at-a-time).

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 15 of 17

https://www.syclops.org/updates/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time-part-one
https://www.syclops.org/updates/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time-part-one
https://www.syclops.org/updates/2024/08/13/part-two-porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time
https://www.syclops.org/updates/2024/08/13/part-two-porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time

%) SYCLOPS

The work conducted demonstrated a successful approach for migrating CUDA applications to the open
standard SYCL, relying on the combined strengths of the SYCLomatic conversion tool and the
SYCLcompat compatibility library. This synergy allows developers to rapidly generate functional and
performant SYCL applications based on existing CUDA code. A key metric of success is that SYCLomatic
typically translates approximately 85% of CUDA code successfully, thereby dramatically reducing the
manual effort required. Furthermore, the tool intelligently highlights its own translation limitations, making
it straightforward for developers to identify and focus on the remaining complex sections that require
refinement. Importantly, the resulting kernel demonstrated high performance and portability across diverse
processor architectures, including NVIDIA GPUs, x64 CPUs, RISC-V CPUs, and the SYCLARA RISC-V
accelerator developed within SYCLOPS and deployed in the SYCLOPS EMDC.

6. Conclusion

Finally, the tools proved their utility beyond the project’s scope through the successful generation of the
SYCL backend for Llama.CPP, a high-performance inference engine for large language models (LLMs).
This external use case provided an ideal testing ground, leveraging the existing CUDA backend as a
crucial benchmark to verify the correctness and performance of the automatically generated SYCL code.

In conclusion, the project successfully demonstrated that the SYCLomatic and SYCLcompat toolchain
provides a vital means for accelerating the adoption of heterogeneous computing by providing a
streamlined, efficient, and performance-competitive method for migrating high-performance computing
applications away from proprietary CUDA ecosystems.

All work done on SYCLomatic and SYCLcompat has already been made open source in their public Github
repositories.

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 16 of 17

 SYCLOPS

References

[1] https://codeplay.com/portal/blogs/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-
[lama-at-a-time-part-one

[2] https://intel.github.io/llvm/syclcompat/README.html

[3] https://www.youtube.com/watch?v=isZyevA6iZM

Copyright © 2023 SYCLOPS | Deliverable 5.1 — CUDA to SYCL porting tool Page 17 of 17

https://codeplay.com/portal/blogs/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time-part-one
https://codeplay.com/portal/blogs/2024/07/31/porting-ai-codes-from-cuda-to-sycl-and-oneapi-one-llama-at-a-time-part-one
https://intel.github.io/llvm/syclcompat/README.html
https://www.youtube.com/watch?v=isZyevA6jZM

