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Disclaimer

This document contains material, which is the copyright of certain SYCLOPS contractors, and may not
be reproduced or copied without permission. All SYCLOPS consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information

contained in this document may require a license from the proprietor of that information. The

reproduction of this document or of parts of it requires an agreement with the proprietor of that
information.

The SYCLOPS consortium consists of the following partners:

Partner Organisation Name Partner Organisation Short Country
Name
1 EURECOM EUR FR
2 INESC ID - INSTITUTO DE INESC PT
ENGENHARIADE
SISTEMAS E COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA
3 RUPRECHT-KARLS- UHEI DE
UNIVERSITAET HEIDELBERG
4 ORGANISATION EUROPEENNE CERN CH
POUR LA RECHERCHE
NUCLEAIRE
5 HIRO MICRODATACENTERS B.V. HIRO NL
6 ACCELOM ACC FR
7 CODASIPSRO CsIP Cz
8 CODEPLAY SOFTWARE LIMITED CPLAY UK
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Executive Summary

This deliverable reports on the development of the SYCL-ROQT library, a set of SYCL based components
which enable performance-portable high-energy physics (HEP) data analysis on heterogenous hardware.
The work targets both foundational mathematics (via GenVectorX) and high-level analysis interface
(RDataFrame), aiming to prepare ROOT for efficient execution on GPUs and emerging accelerators
across multiple vendors.

Within task 5.3, progress was achieved in:

1.

GenVectorX: A SYCL-based reimplementation of ROOT’s GenVector library, which is intended to
provide classes and functionalities to represent and manipulate particle events. The library enables
these operations to run on GPUs and accelerators with performance portability. Initial validations
confirm functional correctness on NVIDIA and AMD GPUs, with benchmarked speedups on
NVIDIA GPUs compared to CPU execution.

RDataFrame: RDataFrame is ROOT’s high-level data analysis interface, representing physics
data in a columnar format (Dataframe). HEP analysis involves iterating over the events (rows) to
compute distributions (histogramming), applying filters and computing new columns. Prototype
support has been developed to offload selected RDataFrame actions to GPUs, like histogramming,
and increasing computational intensity by offloading define action (define + histogramming), which
reduces kernel launch overhead and demonstrates speedups in physics analyses.

Physics Case Studies: The prototypes have been validated in simplified analyses, like the di-
muon invariant mass computation and folded W boson analysis. These studies highlight the
benefits (up to ~2X speedups in some cases).

Performance portability: Benchmarks across CUDA and SYCL implementations (DPC++,
AdaptiveCpp) explored memory models (buffers vs USM) and portability trade-offs. While CUDA
remains faster on NVIDIA devices, USM-based SYCL approach reach competitive performance
with the added benefit of cross-vendor portability.

Profiling: Performance bottlenecks have been measured using Perf, Nsight, and AdaptivePerf,
providing guidance for further optimization.

All developments are publicly available, with SYCL-ROOT components hosted on Github, and will be
integrated to ROOT (via pull requests). Results are disseminated through presentations at conferences
and papers.
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Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer,
(i) platform layer, and (iii) application libraries and tools layer.

1 Introduction

:
: | Autonomous systems |

| High-energy physics analysis | Applications

Precision oncology |

pOrtDNN Libraries & |
Tools

SYCL Compilers SYCL Runtimes Platform

RISC-V
RVV accelerator

Figure 1. SYCLOPS architecture

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and
provides heterogeneous hardware with a wide range of accelerators from several vendors.

Platform layer: The second layer from the bottom, the platform layer, provides the software required to
compile, execute, and interpret SYCL applications over processors in the infrastructure layer. SYCLOPS
will contain oneAPI DPC++ compiler from CPLAY, and AdaptiveCpp from UHEI In terms of SYCL
interpreters, SYCLOPS will contain Cling from CERN.

Application libraries and tools layer: While the platform layer described above enables direct
programming in SYCL, the libraries layer enables API-based programming by providing pre-designed,
tuned libraries for various deep learning methods for the PointNet autonomous systems use case (SYCL-
DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel algorithms for
scalable genomic analysis (SYCL-GAL).

This deliverable covers the SYCL-ROOT part of the stack as highlighted in Figure 1. Several
developments have been made in the context of “WP5: Task 5.3 SYCL-ROQOT Library”. This deliverable
is a summary of this work done.

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level overview of the
overall SYCLOPS architecture and positions this deliverable with respect to both components in the
SYCLOPS stack and WP/tasks in the work plan. Section 2 gives the background on ROOT and the
relevant libraries. Section 3 describes the work done on the SYCL-ROOT library.
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The discovery of Higgs boson by the ATLAS and CMS collaborations in 2012 (Figure 2) marked a
milestone in particle physics and highlighted the critical role of large-scale data analysis frameworks such
as ROOT. ROOT provides the tools needed to store, transform and analyse the petabyte-scale datasets
produced by the LHC. With the upcoming high-luminosity LHC, the data rate is expected to increase by
an order of magnitude. As data volumes and analysis complexity increase, ROOT must evolve to exploit
heterogenous hardware platforms such as GPUs and emerging accelerators while maintaining its broad
adoption in the physics community.

2 Background
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Figure 2: The ATLAS Collaboration. Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC
Physics Letters B. 2012 Sep 17;716(1):1-29, Figure 5a, DOI: https://doi.org/10.1016/j.physletb.2012.08.020

This section introduces the ROOT components relevant to Task 5.3, reviews the limitations of vendor-
specific GPU implementations, and motivates the use of SYCL as a sustainable approach to performance
portability.

2.1 ROOT, RDataFrame, Vector Algebra in HEP

ROOT offers a rich ecosystem of libraries that support diverse HEP analysis tasks. Among these, the
two components are especially relevant for GPU acceleration:

- RDataFrame (RDF): ROOT’s high-level interface for analysis of columnar data: event rows with
property columns. It has a declarative interface that allows users to build analysis pipelines
through high-level transformations and aggregations.

- GenVector: A math package that provides 2, 3 and 4 dimensional physical vectors in different
coordinate systems, enabling fundamental operations for HEP analysis. This include more
advanced operations like rotations, Lorentz and Poincare transformations.

These components are widely used. For example, a typical analysis workflow involves reading and
decompressing event data, applying filters, defining additional columns, and aggregating results through
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by filling histograms. Figure 3 shows an example RDF code to compute invariant masses for a set of 4
dimensional particles expressed as GenVector objects. Vector algebra operations occur repeatedly in

these pipelines making them natural candidates for acceleration.

1 | ROOT::RDataFrame df(dataset);

2 |auto InvariantMass = [](double x, double y,
double e) {

3 PxPyPzE p(x,y,z,e);

4 return e.M();

5 }s

6 |auto dfl = df.Filter("x != 0")

7 .Define("m", InvariantMass,

"x","y","z", "e" 1)
8 |auto hl = dfl.HistolD("m");
9 |hl.Draw();

double z,

Figure 3: Basic RDataFrame workflow
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3 SYCL-ROOT Acceleration Library

SYCL-ROOQT acceleration library is the central outcome of Task 5.3. It provides a set of SYCL-based
implementations of performance-critical ROOT components.

All SYCL-ROOT components are developed in public repositories to ensure transparency and
reproducibility:

- GenVectorX: https://github.com/root-project/genvectorx
- ROQOT integration branch (RDataFrame):
https://github.com/mdessole/root/tree/genvectorx gpu histogram bulk-2.0

GenVectorX

The library GenVector was extended to GenVectorX, which enables parallel execution on NVIDIA GPUs
via CUDA and other backends via SYCL, while retaining performance, minimizing code duplication and
maximizing code reuse. This promotes code sustainability and portability. The below figure states the
code similarity (a value ranging between 0 and 1, where 1 means that two code bases are equal)
between GenvectorX and GenVector. i.e. the GenVector original code, and the other platforms taken
into account. For a detailed description of how code similarity is evaluated, please refer to reference (3).

Similarity  Platform Problem

0.9694 CUDA Invariant Masses
0.9715 SYCL Invariant Masses

Figure 4: Code similarities against pure C++ code

Tests were carried out on different NVIDIA GPUs (NVIDIA GeForce RTX 3060 using CUDA 12.2,
NVIDIA L4 using CUDA 12.3), focusing on the performance gap between native CUDA and SYCL code
execution. For an invariant mass computation problem, we study scaling and demonstrate that our
implementation reaches performance portability, for almost all sizes of inputs. Figure 5 shows kernel
execution time (excluding memory transfers) against input size (number of particles). CUDA and SYCL
implementations are compared, the latter being compiled with both AdaptiveCpp and oneAPI DPC++
and using two memory paradigms, namely buffers+accessors (BUF) and USM device pointers (PTR).
Figure 6 shows total execution time breakdown for several input sizes. Three categories are highlighted:
memory operations, kernels and CUDA API calls. We do not observe a significant difference between
the two memory management strategies, BUF and PTR. However, oneAPI DPC++ version performs
better and is closer to native CUDA.
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Figure 6: Total Execution Time Breakdown

3.2 Histogramming
RDF has been extended with SYCL offloading for histogramming, enabling these actions to run on
GPUs and accelerators. This work demonstrates how we can benefit from heterogenous execution.

The histogram action in ROOT normally involves 3 steps:

- Determining which coordinate to fill based on the input coordinate
- Incrementing the bin with a given weight
- Updating the sum variables for histogram statistics (e.g., mean, standard deviation)

In the CUDA version, two base kernels compute the three histogramming steps:

- Histogram kernel: Each thread block first fills its own local histogram in shared memaory (reducing
contention), then these results are merged into the final global histogram.
- Reduction kernel: Computes statistics like mean and standard deviation.

Copyright © 2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 10 of 17



%) SYCLOPS

Figure 7 shows the computational workflow for the histogramming action. The dataset is broken down in
bulks of events which can fit into GPU memory and are sequentially processed.

Thae | ) . Update FinalBulk _ (~ )
Load Copy Bulk 1 (=6 Add Bin » Copy Results
Event ==3p» Bulk — to GPU Fill Bins Bulk Contents =3  Stats > Back
Loop . ) Bulk ek
Histogram Action
Legend
CPU GPU " Data Transfer

Figure 7: The GPU Histogram Action

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In:
Proceedings of the 12th International Workshop on OpenCL and SYCL. IWOCL '24. Chicago, IL, USA: Association for Computing Machinery,
2024. doi: 10.1145/3648115.3648122

For the SYCL version, we ported the CUDA kernels to a named function object with identical behaviour
(with equivalent SYCL calls). We achieve a speedup (against 24 threaded CPU) of around 1.9x with
DPC++ and 1.4x with AdaptiveCpp at one billion event. Large amount of time is spent on memory
operations.
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Figure 8: Total runtime of RDataFrame histogramming

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In: In: Proc.
12th Int. Workshop on OpenCL and SYCL (IWOCL '24). ACM, 2024. Figure 1. DOI: 10.1145/3648115.364812
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Figure 9: GPU activity profiled using NSight Systems

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In: In: Proc.
12th Int. Workshop on OpenCL and SYCL (IWOCL '24). ACM, 2024. Figure 2. DOI: 10.1145/3648115.364812

Figures 8 and 9 illustrate the results of the benchmark. We evaluate our SYCL implementation with
buffers+accessors (BUF) and USM device pointers (PTR) for transferring bulks of events. We do not
observe a significant difference between the two memory management strategies, BUF and PTR.
However, DPC++ version performs better and is closer to native CUDA. The performance gap between
the SYCL and CUDA implementations widens (i.e., SYCL performance gets relatively worse) with more
events.

For the second part of the investigation, we consider a real-world use case; before histogramming, many
analyses also require computing new quantities from the raw event data. Example usages include
adding a column that contains the invariant mass of a particle, or a selecting a subset of elements of an
array (e.g. only the pts of "good" muons).

This presented another challenge, as computational intensity of Define or Histogram actions alone is not
fully sufficient to exploit GPUs. Therefore, we designed a fused Define+Histo action, where the
histogramming class is templated over the Define operator which can be provided by the user.
Preliminary investigation was conducted on following two real world cases:
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Calculate forward folding and invariant
mass of all good events
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Figure 10 shows the performance results for these two test cases. Performance is heavily test-case
dependent, and results do not take into account the overhead related to RDF Bulk API.

System: AMD Ryzen 7 5700G 16-cores CPU, NVIDIA RTX 3060 GPU

DiMuon Folded W
Number of events 24 067 843 | 100 000
Speedup over 16 threaded CPU 2.6X 95x
Time for data transfers 57.5% 0.1%

Figure 10: Speedup over CPU only execution
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Task 5.3 has demonstrated that GPU acceleration of ROOT workflows using SYCL is both feasible and
beneficial. The SYCL-ROOT library provides the first concrete integration of performance-portable SYCL
components into ROOT, lowering the barrier for heterogenous execution in high-energy physics analyses.

4 Conclusion

Key achievements include:

1. We detailed the migration to both SYCL and CUDA of a large, complex, C++ code base, i.e.
GenVector and Histograms

2. We evaluated code divergence of GenVectorX, to estimate the benefits in maintaining a single
source code without specializing regions of code for specific targets

3. We empirically showed performance portability of the migrated SYCL code on different platforms
and architectures

4. We provided evidence of performance gain for suitable test cases when combining Define and
Histogram actions

What needs to be done:

1. Integration within ROOT is work in progress. Integration with RDF and SYCL-enabled CLING
is only partially available.

2. Carry out performance evaluation on other platforms and architectures, namely Intel GPUs and
RISC-V.

3. Extend GenVectorX to tackle even more complex HEP analyses.
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