
This project has received funding from the European

Union’s HE research and innovation programme under

grant agreement No 101092877

Deliverable 5.3 - SYCL-ROOT

Library

GRANT AGREEMENT NUMBER: 101092877

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 1 of 17

Project acronym: SYCLOPS

Project full title: Scaling extreme analYtics with Cross architecture
acceLeration based on OPen Standards

Call identifier: HORIZON-CL4-2022-DATA-01-05

Type of action: RIA

Start date: 01/01/2023

End date: 31/12/2025

Grant agreement no: 101092877

D5.3 - SYCL-ROOT Library

Executive Summary: This deliverable presents SYCL-ROOT library, which

introduces SYCL-based components to enable performance-

portable HEP data analysis using heterogenous hardware,

preparing ROOT for efficient GPU and accelerator execution.

This includes GenVectorX, a SYCL reimplementation of

ROOT’s GenVector library validated on various GPUs with

performance gains, and RDataFrame, where prototype GPU

support shows speedups in histogramming. Physic case

studies (eg, di-muon invariant mass and Folded W boson

analysis) demonstrate the benefits of up to 2x speedups. All

developments are public on Github and being integrated into

ROOT, with results shared through conferences and

publications.

WP: 5

Author(s): Monica Dessole, Devajith Valaparambil Sreeramaswamy,
Danilo Piparo

Editor: Raja Appuswamy

Leading Partner: CERN

Participating Partners:

Version: 1.0 Status: Draft

Deliverable Type: Other Dissemination Level: PU

Official Submission
Date:

30-Sep-2025 Actual Submission
Date:

06-Oct-2025

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 2 of 17

Disclaimer
This document contains material, which is the copyright of certain SYCLOPS contractors, and may not
be reproduced or copied without permission. All SYCLOPS consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information
contained in this document may require a license from the proprietor of that information. The
reproduction of this document or of parts of it requires an agreement with the proprietor of that
information.

The SYCLOPS consortium consists of the following partners:

No. Partner Organisation Name Partner Organisation Short
Name

Country

1 EURECOM EUR FR

2 INESC ID - INSTITUTO DE
ENGENHARIADE
SISTEMAS E COMPUTADORES,
INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA

INESC PT

3 RUPRECHT-KARLS-
UNIVERSITAET HEIDELBERG

UHEI DE

4 ORGANISATION EUROPEENNE
POUR LA RECHERCHE
NUCLEAIRE

CERN

CH

5 HIRO MICRODATACENTERS B.V. HIRO NL

6 ACCELOM ACC FR

7 CODASIP S R O CSIP CZ

8 CODEPLAY SOFTWARE LIMITED CPLAY UK

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 3 of 17

Document Revision History

Version Description Contributions

0.1 Initial draft EUR

0.2 Updated core contribution CERN

1.0 Finalized draft EUR

Authors

Author Partner

Devajith Valaparambil
Sreeramaswamy

CERN

Monica Dessole CERN

Reviewers

Name Organisation
Aleksandar Ilic INESC

Vincent Heuveline UHEI

Stefan Roiser CERN

Nimisha Chaturvedi ACC

Martin Bozek CSIP

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made through

appropriate citation, quotation or both.

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 4 of 17

Table of Contents

1 Introduction ... 6

2 Background ... 7

2.1 ROOT, RDataFrame, Vector Algebra in HEP... 7

3 SYCL-ROOT Acceleration Library ... 9

3.1 GenVectorX ... 9

3.2 Histogramming .. 10

4 Conclusion .. 15

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 5 of 17

Executive Summary

This deliverable reports on the development of the SYCL-ROOT library, a set of SYCL based components

which enable performance-portable high-energy physics (HEP) data analysis on heterogenous hardware.

The work targets both foundational mathematics (via GenVectorX) and high-level analysis interface

(RDataFrame), aiming to prepare ROOT for efficient execution on GPUs and emerging accelerators

across multiple vendors.

Within task 5.3, progress was achieved in:

1. GenVectorX: A SYCL-based reimplementation of ROOT’s GenVector library, which is intended to

provide classes and functionalities to represent and manipulate particle events. The library enables

these operations to run on GPUs and accelerators with performance portability. Initial validations

confirm functional correctness on NVIDIA and AMD GPUs, with benchmarked speedups on

NVIDIA GPUs compared to CPU execution.

2. RDataFrame: RDataFrame is ROOT’s high-level data analysis interface, representing physics

data in a columnar format (Dataframe). HEP analysis involves iterating over the events (rows) to

compute distributions (histogramming), applying filters and computing new columns. Prototype

support has been developed to offload selected RDataFrame actions to GPUs, like histogramming,

and increasing computational intensity by offloading define action (define + histogramming), which

reduces kernel launch overhead and demonstrates speedups in physics analyses.

3. Physics Case Studies: The prototypes have been validated in simplified analyses, like the di-

muon invariant mass computation and folded W boson analysis. These studies highlight the

benefits (up to ~2X speedups in some cases).

4. Performance portability: Benchmarks across CUDA and SYCL implementations (DPC++,

AdaptiveCpp) explored memory models (buffers vs USM) and portability trade-offs. While CUDA

remains faster on NVIDIA devices, USM-based SYCL approach reach competitive performance

with the added benefit of cross-vendor portability.

5. Profiling: Performance bottlenecks have been measured using Perf, Nsight, and AdaptivePerf,

providing guidance for further optimization.

All developments are publicly available, with SYCL-ROOT components hosted on Github, and will be

integrated to ROOT (via pull requests). Results are disseminated through presentations at conferences

and papers.

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 6 of 17

1 Introduction

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer,

(ii) platform layer, and (iii) application libraries and tools layer.

Figure 1. SYCLOPS architecture

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and

provides heterogeneous hardware with a wide range of accelerators from several vendors.

Platform layer: The second layer from the bottom, the platform layer, provides the software required to

compile, execute, and interpret SYCL applications over processors in the infrastructure layer. SYCLOPS

will contain oneAPI DPC++ compiler from CPLAY, and AdaptiveCpp from UHEI. In terms of SYCL

interpreters, SYCLOPS will contain Cling from CERN.

Application libraries and tools layer: While the platform layer described above enables direct

programming in SYCL, the libraries layer enables API-based programming by providing pre-designed,

tuned libraries for various deep learning methods for the PointNet autonomous systems use case (SYCL-

DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel algorithms for

scalable genomic analysis (SYCL-GAL).

This deliverable covers the SYCL-ROOT part of the stack as highlighted in Figure 1. Several

developments have been made in the context of “WP5: Task 5.3 SYCL-ROOT Library”. This deliverable

is a summary of this work done.

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level overview of the

overall SYCLOPS architecture and positions this deliverable with respect to both components in the

SYCLOPS stack and WP/tasks in the work plan. Section 2 gives the background on ROOT and the

relevant libraries. Section 3 describes the work done on the SYCL-ROOT library.

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 7 of 17

2 Background

The discovery of Higgs boson by the ATLAS and CMS collaborations in 2012 (Figure 2) marked a

milestone in particle physics and highlighted the critical role of large-scale data analysis frameworks such

as ROOT. ROOT provides the tools needed to store, transform and analyse the petabyte-scale datasets

produced by the LHC. With the upcoming high-luminosity LHC, the data rate is expected to increase by

an order of magnitude. As data volumes and analysis complexity increase, ROOT must evolve to exploit

heterogenous hardware platforms such as GPUs and emerging accelerators while maintaining its broad

adoption in the physics community.

Figure 2: The ATLAS Collaboration. Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC

Physics Letters B. 2012 Sep 17;716(1):1-29, Figure 5a, DOI: https://doi.org/10.1016/j.physletb.2012.08.020

This section introduces the ROOT components relevant to Task 5.3, reviews the limitations of vendor-

specific GPU implementations, and motivates the use of SYCL as a sustainable approach to performance

portability.

2.1 ROOT, RDataFrame, Vector Algebra in HEP

ROOT offers a rich ecosystem of libraries that support diverse HEP analysis tasks. Among these, the

two components are especially relevant for GPU acceleration:

- RDataFrame (RDF): ROOT’s high-level interface for analysis of columnar data: event rows with

property columns. It has a declarative interface that allows users to build analysis pipelines

through high-level transformations and aggregations.

- GenVector: A math package that provides 2, 3 and 4 dimensional physical vectors in different

coordinate systems, enabling fundamental operations for HEP analysis. This include more

advanced operations like rotations, Lorentz and Poincare transformations.

These components are widely used. For example, a typical analysis workflow involves reading and

decompressing event data, applying filters, defining additional columns, and aggregating results through

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 8 of 17

by filling histograms. Figure 3 shows an example RDF code to compute invariant masses for a set of 4

dimensional particles expressed as GenVector objects. Vector algebra operations occur repeatedly in

these pipelines making them natural candidates for acceleration.

Figure 3: Basic RDataFrame workflow

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 9 of 17

3 SYCL-ROOT Acceleration Library

SYCL-ROOT acceleration library is the central outcome of Task 5.3. It provides a set of SYCL-based

implementations of performance-critical ROOT components.

All SYCL-ROOT components are developed in public repositories to ensure transparency and

reproducibility:

- GenVectorX: https://github.com/root-project/genvectorx

- ROOT integration branch (RDataFrame):

https://github.com/mdessole/root/tree/genvectorx_gpu_histogram_bulk-2.0

3.1 GenVectorX

The library GenVector was extended to GenVectorX, which enables parallel execution on NVIDIA GPUs

via CUDA and other backends via SYCL, while retaining performance, minimizing code duplication and

maximizing code reuse. This promotes code sustainability and portability. The below figure states the

code similarity (a value ranging between 0 and 1, where 1 means that two code bases are equal)

between GenvectorX and GenVector. i.e. the GenVector original code, and the other platforms taken

into account. For a detailed description of how code similarity is evaluated, please refer to reference (3).

Figure 4: Code similarities against pure C++ code

Tests were carried out on different NVIDIA GPUs (NVIDIA GeForce RTX 3060 using CUDA 12.2,

NVIDIA L4 using CUDA 12.3), focusing on the performance gap between native CUDA and SYCL code

execution. For an invariant mass computation problem, we study scaling and demonstrate that our

implementation reaches performance portability, for almost all sizes of inputs. Figure 5 shows kernel

execution time (excluding memory transfers) against input size (number of particles). CUDA and SYCL

implementations are compared, the latter being compiled with both AdaptiveCpp and oneAPI DPC++

and using two memory paradigms, namely buffers+accessors (BUF) and USM device pointers (PTR).

Figure 6 shows total execution time breakdown for several input sizes. Three categories are highlighted:

memory operations, kernels and CUDA API calls. We do not observe a significant difference between

the two memory management strategies, BUF and PTR. However, oneAPI DPC++ version performs

better and is closer to native CUDA.

https://github.com/root-project/genvectorx
https://github.com/mdessole/root/tree/genvectorx_gpu_histogram_bulk-2.0

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 10 of 17

Figure 5: Scaling - Kernel Execution Time

Figure 6: Total Execution Time Breakdown

3.2 Histogramming

RDF has been extended with SYCL offloading for histogramming, enabling these actions to run on

GPUs and accelerators. This work demonstrates how we can benefit from heterogenous execution.

The histogram action in ROOT normally involves 3 steps:

- Determining which coordinate to fill based on the input coordinate

- Incrementing the bin with a given weight

- Updating the sum variables for histogram statistics (e.g., mean, standard deviation)

In the CUDA version, two base kernels compute the three histogramming steps:

- Histogram kernel: Each thread block first fills its own local histogram in shared memory (reducing

contention), then these results are merged into the final global histogram.

- Reduction kernel: Computes statistics like mean and standard deviation.

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 11 of 17

Figure 7 shows the computational workflow for the histogramming action. The dataset is broken down in

bulks of events which can fit into GPU memory and are sequentially processed.

Figure 7: The GPU Histogram Action

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In:

Proceedings of the 12th International Workshop on OpenCL and SYCL. IWOCL ’24. Chicago, IL, USA: Association for Computing Machinery,

2024. doi: 10.1145/3648115.3648122

For the SYCL version, we ported the CUDA kernels to a named function object with identical behaviour

(with equivalent SYCL calls). We achieve a speedup (against 24 threaded CPU) of around 1.9x with

DPC++ and 1.4x with AdaptiveCpp at one billion event. Large amount of time is spent on memory

operations.

Figure 8: Total runtime of RDataFrame histogramming

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In: In: Proc.

12th Int. Workshop on OpenCL and SYCL (IWOCL ’24). ACM, 2024. Figure 1. DOI: 10.1145/3648115.364812

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 12 of 17

Figure 9: GPU activity profiled using NSight Systems

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In: In: Proc.

12th Int. Workshop on OpenCL and SYCL (IWOCL ’24). ACM, 2024. Figure 2. DOI: 10.1145/3648115.364812

Figures 8 and 9 illustrate the results of the benchmark. We evaluate our SYCL implementation with

buffers+accessors (BUF) and USM device pointers (PTR) for transferring bulks of events. We do not

observe a significant difference between the two memory management strategies, BUF and PTR.

However, DPC++ version performs better and is closer to native CUDA. The performance gap between

the SYCL and CUDA implementations widens (i.e., SYCL performance gets relatively worse) with more

events.

For the second part of the investigation, we consider a real-world use case; before histogramming, many

analyses also require computing new quantities from the raw event data. Example usages include

adding a column that contains the invariant mass of a particle, or a selecting a subset of elements of an

array (e.g. only the pts of "good" muons).

This presented another challenge, as computational intensity of Define or Histogram actions alone is not

fully sufficient to exploit GPUs. Therefore, we designed a fused Define+Histo action, where the

histogramming class is templated over the Define operator which can be provided by the user.

Preliminary investigation was conducted on following two real world cases:

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 13 of 17

3.2.1 DiMuon analysis

- Calculate invariant mass of all events

with exactly 2 muons with opposite

charge

- Discard irrelevant events on CPU

- Transfer 8 doubles (two 4-dimensional

particles) to fill a bin in a single

histogram

- Calculate invariant masses on GPU

- Fill histogram on GPU

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 14 of 17

3.2.2 Folded W analysis

- Calculate forward folding and invariant

mass of all good events

- Discard irrelevant events on CPU

- Forward folding depends on 2

variables, scale and resolution, each

of each might take 100 values

- Transfer 10 doubles (2 4-dimensional

particles and additional value) to fill a

bin in a one of the 10 000 histograms

- Calculate forward foldings and

invariant masses on GPU

- Fill histograms on GPU

Figure 10 shows the performance results for these two test cases. Performance is heavily test-case

dependent, and results do not take into account the overhead related to RDF Bulk API.

Figure 10: Speedup over CPU only execution

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 15 of 17

4 Conclusion

Task 5.3 has demonstrated that GPU acceleration of ROOT workflows using SYCL is both feasible and

beneficial. The SYCL-ROOT library provides the first concrete integration of performance-portable SYCL

components into ROOT, lowering the barrier for heterogenous execution in high-energy physics analyses.

Key achievements include:

1. We detailed the migration to both SYCL and CUDA of a large, complex, C++ code base, i.e.

GenVector and Histograms

2. We evaluated code divergence of GenVectorX, to estimate the benefits in maintaining a single

source code without specializing regions of code for specific targets

3. We empirically showed performance portability of the migrated SYCL code on different platforms

and architectures

4. We provided evidence of performance gain for suitable test cases when combining Define and

Histogram actions

What needs to be done:

1. Integration within ROOT is work in progress. Integration with RDF and SYCL-enabled CLING

is only partially available.

2. Carry out performance evaluation on other platforms and architectures, namely Intel GPUs and

RISC-V.

3. Extend GenVectorX to tackle even more complex HEP analyses.

Copyright  2023 SYCLOPS | DELIVERABLE 5.3 - SYCL-ROOT Library Page 16 of 17

References

(1) https://arxiv.org/abs/2401.13310

(2) https://dl.acm.org/doi/10.1145/3648115.3648122

(3) https://arxiv.org/abs/2312.02756

https://arxiv.org/abs/2401.13310
https://dl.acm.org/doi/10.1145/3648115.3648122
https://arxiv.org/abs/2312.02756

