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Executive Summary 

This deliverable reports on the development of the SYCL-ROOT library, a set of SYCL based components 

which enable performance-portable high-energy physics (HEP) data analysis on heterogenous hardware. 

The work targets both foundational mathematics (via GenVectorX) and high-level analysis interface 

(RDataFrame), aiming to prepare ROOT for efficient execution on GPUs and emerging accelerators 

across multiple vendors. 

Within task 5.3, progress was achieved in: 

1. GenVectorX: A SYCL-based reimplementation of ROOT’s GenVector library, which is intended to 

provide classes and functionalities to represent and manipulate particle events. The library enables 

these operations to run on GPUs and accelerators with performance portability. Initial validations 

confirm functional correctness on NVIDIA and AMD GPUs, with benchmarked speedups on 

NVIDIA GPUs compared to CPU execution. 

2. RDataFrame: RDataFrame is ROOT’s high-level data analysis interface, representing physics 

data in a columnar format (Dataframe). HEP analysis involves iterating over the events (rows) to 

compute distributions (histogramming), applying filters and computing new columns. Prototype 

support has been developed to offload selected RDataFrame actions to GPUs, like histogramming, 

and increasing computational intensity by offloading define action (define + histogramming), which 

reduces kernel launch overhead and demonstrates speedups in physics analyses. 

3. Physics Case Studies: The prototypes have been validated in simplified analyses, like the di-

muon invariant mass computation and folded W boson analysis. These studies highlight the 

benefits (up to ~2X speedups in some cases). 

4. Performance portability: Benchmarks across CUDA and SYCL implementations (DPC++, 

AdaptiveCpp) explored memory models (buffers vs USM) and portability trade-offs. While CUDA 

remains faster on NVIDIA devices, USM-based SYCL approach reach competitive performance 

with the added benefit of cross-vendor portability. 

5. Profiling: Performance bottlenecks have been measured using Perf, Nsight, and AdaptivePerf, 

providing guidance for further optimization. 

All developments are publicly available, with SYCL-ROOT components hosted on Github, and will be 

integrated to ROOT (via pull requests). Results are disseminated through presentations at conferences 

and papers. 
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1 Introduction 

Figure 1 shows the SYCLOPS hardware-software stack consists of three layers: (i) infrastructure layer, 

(ii) platform layer, and (iii) application libraries and tools layer. 

 

Figure 1. SYCLOPS architecture 

Infrastructure layer: The SYCLOPS infrastructure layer is the bottom-most layer of the stack and 

provides heterogeneous hardware with a wide range of accelerators from several vendors. 

Platform layer: The second layer from the bottom, the platform layer, provides the software required to 

compile, execute, and interpret SYCL applications over processors in the infrastructure layer. SYCLOPS 

will contain oneAPI DPC++ compiler from CPLAY, and AdaptiveCpp  from UHEI. In terms of SYCL 

interpreters, SYCLOPS will contain Cling from CERN.  

Application libraries and tools layer: While the platform layer described above enables direct 

programming in SYCL, the libraries layer enables API-based programming by providing pre-designed, 

tuned libraries for various deep learning methods for the PointNet autonomous systems use case (SYCL-

DNN), mathematical operators for scalable HEP analysis (SYCL-ROOT), and data parallel algorithms for 

scalable genomic analysis (SYCL-GAL). 

This deliverable covers the SYCL-ROOT part of the stack as highlighted in Figure 1. Several 

developments have been made in the context of “WP5: Task 5.3 SYCL-ROOT Library”. This deliverable 

is a summary of this work done. 

This deliverable is structured as follows. Section 1 of this deliverable provides a high-level overview of the 

overall SYCLOPS architecture and positions this deliverable with respect to both components in the 

SYCLOPS stack and WP/tasks in the work plan. Section 2 gives the background on ROOT and the 

relevant libraries. Section 3 describes the work done on the SYCL-ROOT library. 
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2 Background 

The discovery of Higgs boson by the ATLAS and CMS collaborations in 2012 (Figure 2) marked a 

milestone in particle physics and highlighted the critical role of large-scale data analysis frameworks such 

as ROOT. ROOT provides the tools needed to store, transform and analyse the petabyte-scale datasets 

produced by the LHC. With the upcoming high-luminosity LHC, the data rate is expected to increase by 

an order of magnitude. As data volumes and analysis complexity increase, ROOT must evolve to exploit 

heterogenous hardware platforms such as GPUs and emerging accelerators while maintaining its broad 

adoption in the physics community. 

 

Figure 2: The ATLAS Collaboration. Observation of a new particle in the search for the Standard 

Model Higgs boson with the ATLAS detector at the LHC 

Physics Letters B. 2012 Sep 17;716(1):1-29, Figure 5a, DOI: https://doi.org/10.1016/j.physletb.2012.08.020 

This section introduces the ROOT components relevant to Task 5.3, reviews the limitations of vendor-

specific GPU implementations, and motivates the use of SYCL as a sustainable approach to performance 

portability. 

2.1 ROOT, RDataFrame, Vector Algebra in HEP 

ROOT offers a rich ecosystem of libraries that support diverse HEP analysis tasks. Among these, the 

two components are especially relevant for GPU acceleration: 

- RDataFrame (RDF): ROOT’s high-level interface for analysis of columnar data: event rows with 

property columns. It has a declarative interface that allows users to build analysis pipelines 

through high-level transformations and aggregations.  

- GenVector: A math package that provides 2, 3 and 4 dimensional physical vectors in different 

coordinate systems, enabling fundamental operations for HEP analysis. This include more 

advanced operations like rotations, Lorentz and Poincare transformations. 

These components are widely used. For example, a typical analysis workflow involves reading and 

decompressing event data, applying filters, defining additional columns, and aggregating results through 
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by filling histograms. Figure 3 shows an example RDF code to compute invariant masses for a set of 4 

dimensional particles expressed as GenVector objects. Vector algebra operations occur repeatedly in 

these pipelines making them natural candidates for acceleration. 

Figure 3: Basic RDataFrame workflow 
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3 SYCL-ROOT Acceleration Library 

SYCL-ROOT acceleration library is the central outcome of Task 5.3. It provides a set of SYCL-based 

implementations of performance-critical ROOT components. 

All SYCL-ROOT components are developed in public repositories to ensure transparency and 

reproducibility:  

- GenVectorX: https://github.com/root-project/genvectorx  

- ROOT integration branch (RDataFrame): 

https://github.com/mdessole/root/tree/genvectorx_gpu_histogram_bulk-2.0 

 

3.1 GenVectorX 

The library GenVector was extended to GenVectorX, which enables parallel execution on NVIDIA GPUs 

via CUDA and other backends via SYCL, while retaining performance, minimizing code duplication and 

maximizing code reuse. This promotes code sustainability and portability. The below figure states the 

code similarity (a value ranging between 0 and 1, where 1 means that two code bases are equal) 

between GenvectorX and GenVector. i.e. the GenVector original code, and the other platforms taken 

into account. For a detailed description of how code similarity is evaluated, please refer to reference (3). 

 

Figure 4: Code similarities against pure C++ code 

Tests were carried out on different NVIDIA GPUs (NVIDIA GeForce RTX 3060 using CUDA 12.2,  

NVIDIA L4 using CUDA 12.3), focusing on the performance gap between native CUDA and SYCL code 

execution. For an invariant mass computation problem, we study scaling and demonstrate that our 

implementation reaches performance portability, for almost all sizes of inputs. Figure 5 shows kernel 

execution time (excluding memory transfers) against input size (number of particles). CUDA and SYCL 

implementations are compared, the latter being compiled with both AdaptiveCpp and oneAPI DPC++ 

and using two memory paradigms, namely buffers+accessors (BUF) and USM device pointers (PTR). 

Figure 6 shows total execution time breakdown for several input sizes. Three categories are highlighted: 

memory operations, kernels and CUDA API calls. We do not observe a significant difference between 

the two memory management strategies, BUF and PTR. However, oneAPI DPC++ version performs 

better and is closer to native CUDA.  

https://github.com/root-project/genvectorx
https://github.com/mdessole/root/tree/genvectorx_gpu_histogram_bulk-2.0
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Figure 5: Scaling - Kernel Execution Time 

 

Figure 6: Total Execution Time Breakdown 

3.2 Histogramming 

RDF has been extended with SYCL offloading for histogramming, enabling these actions to run on 

GPUs and accelerators. This work demonstrates how we can benefit from heterogenous execution. 

The histogram action in ROOT normally involves 3 steps: 

- Determining which coordinate to fill based on the input coordinate 

- Incrementing the bin with a given weight 

- Updating the sum variables for histogram statistics (e.g., mean, standard deviation) 

In the CUDA version, two base kernels compute the three histogramming steps: 

- Histogram kernel: Each thread block first fills its own local histogram in shared memory (reducing 

contention), then these results are merged into the final global histogram. 

- Reduction kernel: Computes statistics like mean and standard deviation. 
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Figure 7 shows the computational workflow for the histogramming action. The dataset is broken down in 

bulks of events which can fit into GPU memory and are sequentially processed.  

Figure 7: The GPU Histogram Action 

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In: 

Proceedings of the 12th International Workshop on OpenCL and SYCL. IWOCL ’24. Chicago, IL, USA: Association for Computing Machinery, 

2024. doi: 10.1145/3648115.3648122 

 

For the SYCL version, we ported the CUDA kernels to a named function object with identical behaviour 

(with equivalent SYCL calls). We achieve a speedup (against 24 threaded CPU) of around 1.9x with 

DPC++ and 1.4x with AdaptiveCpp at one billion event. Large amount of time is spent on memory 

operations. 

 

 

Figure 8: Total runtime of RDataFrame histogramming 

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In: In: Proc. 

12th Int. Workshop on OpenCL and SYCL (IWOCL ’24). ACM, 2024. Figure 1. DOI: 10.1145/3648115.364812 
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Figure 9: GPU activity profiled using NSight Systems 

Jolly Chen, Monica Dessole, and Ana-Lucia Varbanescu. “Migrating CUDA to SYCL: A HEP Case Study with ROOT RDataFrame”. In: In: Proc. 

12th Int. Workshop on OpenCL and SYCL (IWOCL ’24). ACM, 2024. Figure 2. DOI: 10.1145/3648115.364812 

 

Figures 8 and 9 illustrate the results of the benchmark. We evaluate our SYCL implementation with 

buffers+accessors (BUF) and USM device pointers (PTR) for transferring bulks of events. We do not 

observe a significant difference between the two memory management strategies, BUF and PTR. 

However, DPC++ version performs better and is closer to native CUDA. The performance gap between 

the SYCL and CUDA implementations widens (i.e., SYCL performance gets relatively worse) with more 

events. 

For the second part of the investigation, we consider a real-world use case; before histogramming, many 

analyses also require computing new quantities from the raw event data. Example usages include 

adding a column that contains the invariant mass of a particle, or a selecting a subset of elements of an 

array (e.g. only the pts of "good" muons). 

This presented another challenge, as computational intensity of Define or Histogram actions alone is not 

fully sufficient to exploit GPUs. Therefore, we designed a fused Define+Histo action, where the 

histogramming class is templated over the Define operator which can be provided by the user. 

Preliminary investigation was conducted on following two real world cases: 
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3.2.1 DiMuon analysis 

- Calculate invariant mass of all events 

with exactly 2 muons with opposite 

charge 

 

- Discard irrelevant events on CPU 

 

- Transfer 8 doubles (two 4-dimensional 

particles) to fill a bin in a single 

histogram 

 

- Calculate invariant masses on GPU 

 

- Fill histogram on GPU 
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3.2.2 Folded W analysis 

- Calculate forward folding and invariant 

mass of all good events  

  

- Discard irrelevant events on CPU 

 

- Forward folding depends on 2 

variables, scale and resolution, each 

of each might take 100 values 

 

- Transfer 10 doubles (2 4-dimensional 

particles and additional value) to fill a 

bin in a one of the 10 000 histograms 

 

- Calculate forward foldings and 

invariant masses on GPU 

 

- Fill histograms on GPU 

 

 

Figure 10 shows the performance results for these two test cases. Performance is heavily test-case 

dependent, and results do not take into account the overhead related to RDF Bulk API. 

Figure 10: Speedup over CPU only execution 
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4 Conclusion 

Task 5.3 has demonstrated that GPU acceleration of ROOT workflows using SYCL is both feasible and 

beneficial. The SYCL-ROOT library provides the first concrete integration of performance-portable SYCL 

components into ROOT, lowering the barrier for heterogenous execution in high-energy physics analyses. 

Key achievements include: 

1. We detailed the migration to both SYCL and CUDA of a large, complex, C++ code base, i.e. 

GenVector and Histograms 

2. We evaluated code divergence of GenVectorX, to estimate the benefits in maintaining a single 

source code without specializing regions of code for specific targets 

3. We empirically showed performance portability of the migrated SYCL code on different platforms 

and architectures 

4. We provided evidence of performance gain for suitable test cases when combining Define and 

Histogram actions 

What needs to be done: 

1. Integration within ROOT is work in progress. Integration with RDF and SYCL-enabled CLING 

is only partially available. 

2. Carry out performance evaluation on other platforms and architectures, namely Intel GPUs and 

RISC-V. 

3. Extend GenVectorX to tackle even more complex HEP analyses.
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